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ON THE CALCULATION OF STEADY FLOW IN THE
ot BOUNDARY LAYER NEAR THE SURFACE OF A
peotatans CYLINDER IN A STREAM

: RN By L. Howanri, B.A,, B.Sc. Busk Student

y Communicated by Dr. S. GOLDSTEIN .

Reports and Memoranda No. 1632
17th July, 1934

*‘4@“3 Summary.—b. critical survey of methods used by previous workers is
Z St given togetber with some extensions.

ARESETN,
;i"‘ -
T 1. Iatroduction—This paper has been written with a view to
comparing the various methods, so far suggested, of boundary layer
R analysis for steady two-dimensional flow past an obstacle. Some
RN of the methods, as given by their authors, can be reduced to more
S 2 convenient forms for the solution of any given problem. This has
e been done where possible and conclusions drawn as to the usefulness
e of each method.
258 It will be seen that the method due to Blasius and Hiemenz?

should be used whenever possible. This method gives the velocity
at any point in the boundary Jayer as a power series in the distance
from the forward stagnation point, the coefficients being functions
of the distance measured normally from the obstacle. The coeffi-
cients can be expressed in a convenient non-dimensional form and
tabulated once and.for all. Unfortunalely, owing to the amount
of labour involved, only a limited number of these coefficients have
been calculated by the present writer and, in general, the method
cannot be used with confidence as far as the point of separation with
this limited number of coefficients. A step by step method, theoretic-
ally due to Goldstein® and adapted by the present writer for purposes
of calenlation, has been given for continuing this solution. This
method suffers from the drawback that the steps which can be taken
are rather small.  If the number of coefficients given in the solution
of Blasius’s method is not sufficient to give the solution as far as is
it required, an approximate method due to Kdomidn and Pohlhausen?
is recommended either for a complete solution of the problem or for
the continuation of Blasius’s solution. This method appears to
give the point of separation of the flow with as great an accuracy
as experiment, though the full velocity distribution is given with
doubtful accuracy in the neighbourhood of thui point. Another
method due to Bairstow aud Green' may also. be of value. This
method has been used in the case of flow past i circle only, and even
in 1his case, when the pressure distribution seems v be particularly

(25310) : A
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simple, a fairly cumbersome step by step method of finding the
skin friction is necessary. It is anticipated that with more com-
plicated pressure distributions the work involved would be too great
for the method to be of use. Given the skin friction the method
will give the velocity distribution in the middle of the boundary layer
with good accuracy, and it is suggested that it may be of value to
use the skin friction given by the method of Kdrmdn and Pohl-

hausen and then obtain the velocity distribution using the method .

of Bairstow and Green.

In certain circumstances, the method of Pohlhausen breaks
down. Two alternative methods are suggested for use in these
circumstances. The first of these is a modification of the original
method of Pohlhausen due to Dryden® and is described helow.
The second is a modification of Falkner and Skan's’ method due to
the present writer.

The original method of Falkner and Skan and the modxﬁcatmn
are described below, but they both suffer from the drawback that
they break down in the neighbourhood of the point of separation
(see later). The modification is, however, of va]ue in the circum-
stances indicated above.

The remaining methods due to Von Mlees and Luckert? and
Thom?® are described but seem to be of theoretical interest only.
The methods mentioned here and the original method of Falkner and
Skan are not recommended for general use for one of two reasons.
Lither the labour involved in solving any given problem is too great,
or the method is not capable of any wider application, and is moce
cumbersome, than one of the methods inentioned previously.

Where possible the results of the various methods are given first
to enable the reader to judge whether a particular method is suitable
in any given problem.

Several of the methods have been_compared on the problem of
flow past a circle. DBlasius’s method, with the coefficients as given,
could be used to give the velocities to within 02 per cent. as far
as the point of separation in this particular case. The point of
separation is given as 82, with a possible error of 2°. This method
would take, at the outside, four hours to obtain a complete idex
of the velocity distribution in the boundary layer as far as the point
of separation. To obtain a greater accuracy Blasius’s method should
be stopped, say, at 60° and the method of continuation given in

<

paragraph 5 used. Unfortunately, this continuation process has

to be done taking very small steps of about 1° each, if the greater
accuracy is to be retained, and four hours’ work is required per step.
This example is, however, an extreme case, since the velocity dis-
tribution given by Rlasius’s method is accurate enough as far as the

point of separation for all practical purposes. Normally, this method
of continuation will be applied when Blasins’s method ceases to be
of value. \When this is so the maximum error permitted per step
will be greater and the length of the step correspondingly greater.

alseliiiy Codes
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Kdrman's approximate method would carry the solution as far
as the point of separation in about six hours. It is not easy to give
an estimate, of possible error in this method.

It should be stressed that the example chosen is very favourable
to Blasius's method, owing to the convenient expression for the
velocity at the edge of the boundary layer. When this form is not
so convenient, it will be necessary, in using the method, to contiyue
the solution in order to obtain any idea of the point of separation
and the velocity distribution in its neighbourhood. This continua-
tion is laborious, as will be seen from the figures given,and for this
reason Kdrmdn's method is recomnended in general.

If we denote by y distance measured normally to the surface
considered, x distance measured along curves orthogonal to the
normals (incasured {rom the normal at the forward stagnation point),
# and v the fluid velocity components in the directions x and y
increasing, $ the pressure, g the density and » the kinematic viscosity
of the fluid, then the bonndary layer equations are

ou w13 *u

ua—x+vay——z)5;(+v5)72 ) .. . . (1.1)
1 9p .
=% e e (D)

and the equation of continuity is
o  ov ,
-a—:r+-5.;'=0 .o . .. I .o .o (1.3)

In virtue of equation (1.2) the pressure gradient is independent
of ¥, and so the term dp/dx can be replaced by the pressure gradient
at the edge of the boundary layer. This is supposed known either
from experiment or calculation. The latter method can, however,
be used only when the points of sepiaration are very near to the lail
of the obstacle, so that the flow outside the boundary layer and
wake is approximately the same as the perfect fluid flow round the
obstacle, with the requisite circulation, For a symimetrical stream-
line vbstacle the circulation is zero ; for 2 non-symumetrical streain-
line obstacle with no sharp trailing edge the theoretical determination
of 1he circulation is a problem on which the present writer is engaged.

If we denote by U the velocity in the inain stream at the edge
of the boundary layer, U and p are connected by Bernouilli's equation

%+%TJ2=const .. .. .. .. .. (1.4)
which gives

1 dp al )
-a——d-;-——U"i;' o > LY .o (1.’5)
(25340) A2
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Further, (1.1) and (1.5) show that if, as y tends to infinity, # tends
to a value independent of ¥ and 0u/dy and 0°u/dy? tend to zero then
u tends to U.

We proceed to a detailed discussion of each method.

2. Blasius's Method. —Summary—Two cases arise according as
the obstacle is symmetrical about an axis in the direction of the flow
at infinity, or not. We shall speak of them as the symmetrical and
non-symmetrical cases respectively.

In both cases it is necessary to express the velocily in the main
stream at the edge of the boundary Jayer as a power series or poly-
nomialin x. In general, in order to obtain an accurate representation
of this velocity, a power series will be required. Using this series,
Blasius’s method will give the accurate solution of the problem

*considered, provided a sufficient amount of time and labour is spent

onit. Alternatively, it is often possible to express the velocity at the
edge of the boundary layer as a polynomial with a small number of
terms as far from the stagnation point as the solution is required.
This considerably decreases the work attached and is advisable in all
cases where it is possible.

The method expresses the velocity components at any point as
power series in x whose coefficients are functions of y. These
coefficients can be put in convenient forms and reduce any problem
to simple arithmetic and the use of tables. Tables sufficient to
determine the coefficients of the first three terms fully, and in special
cases the fourth, in both the syrnmetrical and non-symmetrical cases,
have been calculated by the present writer and are given below
(pp. 51-54).

(1) Symmetrical Case—The velocity distribution at the edge of

the boundary layer can be expressed in the form
U=axtupdtupab+ ... .. .o . (2.1
starting from the forward stagnation point.

Then, assuining that the stream function y can be expressed as a
power series in x with coefficients that are functions of y, the wulues

of the velocity components u= aa—yy’and V= — %}? are given by

2 -
w=a,f'x 4 4y f/x*+ 6 (“585' + t‘ul h;) x5
1
+S(”° 3ur 7 + k >x7'r10(”9(>91+ 1“7 '

1, u,2u b
5 3 ’ 2]
I l9 ‘l" 9 i‘i“_':; qﬂ xo —-—: ceoco . (2.~)
1

11«"
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[y oy ¢ us*

—_—y= [— [“1/1 + 124, f3x* - 30 (1!5g5 + = h5> x4
U, %y

+56(u,7+-"“°l + o k,)x°+90(u“+ Ballr ),

11,2 gttty u5 ; g
+ - ke Je ‘19 +] .. (2.8)
14 1,®
ou —1_1: .. Y A ":12, N s
oy > ay f,7% -f Ay fi7x% 6 18" - ?4- 1" ) x

.‘Il b

+ 8 (age” + 0y B) #7410 (g + 1y

gt % 2u, Y 214
+ k2 ,39.:)’" +""J .. (24)

) 1,°
The point of separation is given by (51‘) =0
So VA L fs 1T g 86 8670 Bs By 5" and Ry, 1/, ey are shown
in Table 1 as functionsof n = ¥ ( )

The remaining coefficieuts are defined by differential equations.
Some of these are given below in equations (2.30) to (2.37).

We note the following special cases
BDty=rg=t,=........ =0
All the series terminate and give
g
we=a fix, ve=—a/ou,f,, S;_N/ .. (2.5)
As would be expected no separation occurs.
(i ug=1tts=.......... =

The series do not terminate but give

w=u,f,'s ~}-4u3f313+6--—-h5’ 5-{-8_ ey

+ 105 g0 4 (2.6)
“l:,qg b .. .. .. X

+ 902 q,ﬂ-;- .......... ] @y

{23340} A3
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u=,\/“1[l1f1x+4l£3f3)-34-6 h"5+8—k,x7

%

2

+10“3q9x9+ .......... ] o .e8

(if) Non-symmetrical Case—In this case the velocity at the edge

of the boundary layer takes the form
Uszztyx +ux? ugx®+ .on o .. .. .. (2.9)

Proceeding as before we find
w=u,f,'x + u.fo'x? + 4 (uaga’ -+ I_Tl‘": h;) 23
1

3

o,
274
]5

45 (nagd + 200+ i h ) 6 (s

u L1t
kg +’2‘35+uaq5>x5+.... .. (2.10)

2,2

» . a2 .
—y= —[7‘1f1+6"zf2x 4 12{ 2,9, -F — h;,)x-

1y 1,

3
+ 20 #ega + e hy+ =2, kd) %P 4 30 ( 1585 -F s hs
Uy Uy 14,
1,2 1,20, 1!
okt T el ;’f.:.q.r,)x‘+....] .o (210

1!"

a?‘ —7—;— n .o ” uzz r
= \/-1—'1 [“1f1"" 4 Bu, f,"x* -+ 4 (u;,ga + o hy >x“

4 5{ 1,8," + u"”’l " + — k, >x4 + 6(110go” n“’“‘l ”
1,2 1.2 L .
+ 8 WJ N “;95> s ] . 219

The point of separation is given by <Gu> =0

Ju iSRS fa f 127 8 84 g5 By By's hy" and ky, ey, ky" are shown
in Table 2 as functionsof n =y ( >

The remaining coefficients are defined by differential equations.
Some of these ure given below in equations (2.47) to (2.54).
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The following are special cases of interest :—
() Huy=su;=nu,=.......... =0
the series terminate and the results are identical with those in the
symmetrical case when #ty =1;=.... =0.

(i) fu,=u,=....=0

=, f,'x ‘-3“2fzx2+‘1_ 'x3+5u2 kyxt
+6 qs x5 4 . .. .. . p (2.13)

o '1_. 7 L
.v = \/u1 [u!f1 + 61, x4+ 12 ” Jax?® -+ 20 y kyx

+30"395x+ ] L1

» .2 3
ou ul i u
= it » 2 1 g2 "3 jat- I W'
Oy'—\/v 'ul_f2 x+3u2/2x -,-4—:-1‘1 bo"x +5u,2k‘x

].. e (215)

Detuils.—Thxs method, originally due to Blasius, was elaborated
by Hiemenz (loc. cit.). They were both concerned with the sym-
metvical case. Their calculations for this case have been extended,
and the details for the non-symmetrical case have been worked out
by the present writer.

+ 6 ‘15""5 + .

(1) Symmetrical Case.—The velocity at the edge of the boundary
Jayer is supposed known and expressed as a power series

U=ux+uaFuaxbt. ... . .. .. .o (2.16)
This series may, or may not, termnmte
Xquation (1.3) implies the existence of a stream function defined
by
oy oy
._-5)-’-, V= — . .. .. .o (217
Blusius’s method of solution is 1o assume that 4 can be expressed
in the form of a power series
w=le‘*‘F3x3+st5+ ceoe .o . ‘e (2.18)
where the F’s are functions of y.
This gi.es
=TF/2x+F /B LT 25+ ... .. .. .o (219
hanad U = rl "!' 3r3¥2 + Ol sk + ) . .o (2.20)

(25340) Ad
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Substituting these values in equation (1.1) and equating coefficients

of powers of x we find
F/*=FF =u?4 "' .
4F,F —3F,"F, — F,F," = 4wy, 448,
61,' Ty — 8F,"Fy — I\F;" = Guyue, + 3u:l
— 3 (F2—=TF,F,") + vF "t

8F,'F,) —7E,"F, — ¥\I," =8 (wu, + uau5)
- (8F3'F5' - 3F3F5” - 5F3"F5) ’}‘ VF7" !

10T,y — OF,"Fg — F,F," = 10 (u;n, -+ 1,1,) 4- Sus?
— 5§ (Fy'* = FFg") — (WF'F, — 3F " — 71%,1%,")
e k7 M . . .

(2.21)
(2.22)

(2.23)

(2.25)

and so on, dashes here denoting differentiations with respect to y.

Writing
u\}
n= (71) ¥, Fy=/(up)?

)
F5=61l5<;‘:) °,+;:-‘-:-;—5 ),
. v Uths ) 11,3
F, = 8u, (;) .+ ;u—u-;- .k l-’-g;‘— k.,> ,
tythy ) RTINS
Fg= 10“0( ) (oo + == 1, u, ty u 10y ko =+ mh

u,
+ =5 By, qg) etc.

1y

» » ‘

the eqnations become
L= QA" =1+ 4" x
A0y =N fa—Nhfs =Y +L" ..
6’85 — 565 — /185" =1-F§""
AN — Sf s — fil" =1+ hs" "~
8h¢ — Mg — g =1+

8§ (/s —faf/)

S'hi' =7 by —fihy" =1+ D" — 3 (%:,s - ’Va"gs

- 3./lga )
Sfl'l)l'7’ -7 ~k- .= f1k7 = ’\-7" !
— 33k -
1048y’ ~ 9N "8 — 18" =1+ 84"’

(Sf;h, - on”lzs

P~ TN e e
[ S S I
[So T So T N T ]
L &£ 2 e

—~
_t‘o
==

)
~——

by




f
I
{ its
2)
3)
)
3) o
A
;
!
g .
{
§
4
- ,/
A Y
y o
]
r A 1
]
€
s‘! e
!
P
i
i t
b )
i
s i
! . §
2
3
R

10/, g’ — 9f, "By — fiho" =1 -+ g™’
~Ruoe — e ~Te) - . . @89
10f,'ky' — Qfl"/\‘.u —~fik" =%+ k" — 18(g* — g8y .. (2.39)
0450 = e —fdo” =" = (Oshe’ — 3k,
— Tfs ) — 18 (2 — gshr,” —geh) .. .. (286)

1049y ~ 9,0 — (" = 0" ' — 5 (10f,'k, — 3fsk,”

— 7f k) — 18 (hs'? — hhy” ). . .. - .. {2.37)
where dashes now denote differentiation with regard to #.

The boundary conditinns satisfied are
=f,'=0aty=0 fi=latyp=o
fo=fs=0atn=0 f/=}aty=c

, 1
g5=¢gs =0atyn=0 g5=-6-at17=co

r.

1
g =g =0atn=0 g7'=-8at;7=co

go=2g,/=0aty=0 Yo 10'\(’./)—-6)

hy=hy=h,=h/ =k =Ny =hy=hy =hky= 1)) =,

=7 =go=¢y =0at n=0
and
hy=h =k =h) =1k =3 =¢/ =0at n= 0.

These equations are independent of the #'s and can be solved
once and for all and the solutions used in any problem. Blasius
gave the transformations for reducing the equations for F; and T,
to the forms given above. Hiemenz sclved these reduced equations
and remarked that it seemed to be impossible to find a fransforination
which would reduce, similarly, the remaining equations. That this
is not the case will be seen from the above.

(2) Non-symmetrical Case.~This case is precisely analogous {o
the preceding one. We can write the velocity at the edge of the
boundary layer, in this case, as the power series

U = 1% 4 2px® L oaga® 4
Assuming

yp= T4 Tox® + Tyrd 4 .
the differential (*qmtions for the F's are

1\ ” I"lr r o “1 + 'pr nr . .a . . .. (2.38)
3F11 i 171" "I — 1‘ 1‘ v == 31[111 —* ‘VI‘.,” ‘ v .« (2.39)
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...........

10
4F '1? ! qukr -~ FlFa" ol?nF2’ + 2 DA
= 4uity - 20,2 + vF,"’ .
SF\'F,' — 4F,"F, — F,F," -—2FF " — 3F2’T +5F,’1*3
= 5(uyuy + u,u,) + 7F "
6F,'F; — §F,"F; — F\T," — 3F,F," + 3F3"~‘ — 4F,F,”
~2F,"F, + 6F /T = 6(1,u; + uste,) -+ Bus2 - vF,"’

and so on, dashes denoting differentiations with re gw‘ to y. The

boundary conditions ~h «h % and v satisfy are
() u=0=0aty==0
(i) x=U,v=0aty= co.

These imply

* F,=F, =F; .. .=0aty=10
F/=F/ =F,....=0aty=0
Fyy =u,F =u, F)/=ug....aty = 0.
Write .

)\

SR

P

» i
F, = 3, (—) ,

=
if
e

N

) - .
y 1%
F, =4u (—>
3 I\, &+ o ity By |
F [ .<1'>‘ + u?u3 i_ u? k
= du;( — —
s i\%,) L8 Uyl bt g ity
»\' [ Ualby o . Uy 10,0
. =06u (-—) g, L 23 2 "
5 S\uy/ Lo wug " + T2t hs + oo, 1,21,
R
: cte
131 95J

The small letters then satisfy the following equations :—

h?

W =277,

g —3"gs

_jljl” =i+ f"

— L' =141

— A& =1+g""

ks — Sy — Sl = 0y
SHed — 4 g =g =1+g,"’

S5fhy = Af g~ [ = 1 4y —

[y »
— 2fu8s")

~ ~.

— U= 1S

12 -~ [ 7 »
5 &fo'ty — 3,7

(2.40)
(2.41)

(2.42)

(2.43)
(2.44)
(2.45)

(2.46)
(2.47)

(2.43)
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SHRY —4fy"ky— fiky)" =Ry — 5 (5/2'hy" — 3f,"h,
— 2ok .. .. .. . .. .o (249
6h'es —9N"es —figs"=1+g"" .. e o (250)

7 ’ ” ”n 1 ” 7 5 !’ , ”»
6y —5f"hg— fils" =14+ bg" ' — §(6f284 —4f,"g, ¢
—2f,8") .. .. .. .. .. .. (2.51)
Gh'ky —S8f\"hs — fiks" =k + A" —8(g2 — gags"). . (2.52)

12 o > *n? s [} A 4 ”
6475 — 5\"1s — fids" =75 "Q(ﬁle‘a —4f,"hy
— 2fh") — 8(28,'hy — gahy" — g3"hy) .. .o (253

7 ’ » n " 5 14 ’ ”
6,5’ — 8/1"95 — /195" = ¢ —§(6f2k4 —4f."k, .
— 2k, = 8(ht—hhy”) .. .. L. (254)

etc., and the boundary conditions

h=R=f=fl=g=g =lh=k=¢g =g/

=y =y =k =y = gy = gy = by = by’ =
=k =js =7 =q=¢; =0atn=0-

’ ’ 1 ’ ] 4 1 ! l

A =1/ =§:£’3 =78 =‘5‘:g5 =%

hy=h/=Rk)/!=h/=4k/=3'=¢/=0

atn= o

where dashes denote differentiations with respect to 7.

The Numerical Integration of the Equations—The method of
numerical integration used throughout was that due to Adams.

All the equations are of the third order with two boundary
conditions given at # = ( and one at 5 = oo. The first equations ot
both the symmetrical and non-symmetrical cases are the same, have
the same boundary conditions and are non-linear. The remaining
equations are all linear. ' R

For each of the linear equations two numerical inlegrations to
infinity are required. Denoting by f the dependent variable in any
particular example the boundary conditions are

f=f=0atn=0, [ =const.atyn= .

The method of solution is to assume a value of f” at 5 = 0 and find
the corresponding particular integral I. Using the same values of
f%, [ and fat =20, a complementary function G can be found.
Any solution of the equation may be written (4G -+ I) where 2 is
an arbitrary constant. Application of the condition at infinity
gives the requisite value of /.
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It has not been proved that all the equations have solutions
satisfying the boundary conditions given. Solutions were [ound to
exist, however, in all the cases which have been attempted.

The non-linear equation is more difficult to solve. In this case,
however, Blasius and Hiemenz had given approximate solutions, and
it was found that two integrations to infinity were sufficient to give
the correct values. In general, a number of integrations to infinity
have to be made with different values of /" at # = 0, and interpolation
used to find an approximately correct value for /*. Two integrations
in the neighbourhood of this value are generally suflicient to give
the correct integrai.

Hiemenz has given tables of f; and f; in the syminetrical case,
/1 to four decimal places and f, to three. The integrations were not
carried out sufficiently far to enable bim to give the fourth figure
for £, correctly for the higher values of 7, and there appears to be a
misprint. These integrations have been carried out afresh; and
g5 hg and k, for the symmetrical case, together with f), fy, g5 /3
and £, for the non-syminetrical case, have also been found by the
present writer. In the symmetrical case f, is given to four figures;
Ja since it depends on f;, to three figures ; g, and Ay to two figures;
k,, since it depends on A, could only be found very roughly, but the
figures in Table 1 serve to give the order of magnitude of this term.
Similar remarks apply to the accuracy of the coefficients in Table 2.

The Range of Usefulness of the Method.—The range of usefulness
of the method depends, primarily, on the number of coefficients
tabulated. We consider this range when the coefficients are tabulated
as in Table 1 or 2 and take as an example the symmetrical case.

(a) If U is expressible in the form (x,x) for a range of values of
x,0 <z = q,, the problem isentirely solved by using the tables of

" f; and the results given in (2.5). .

(6) If U is expressible in the form U = wu x 4 u,s? for a range
0 < x X a,, the velocity distribution in the boundary layer is given
by equation (2.6) above, and the point of separation, if it exists in
this range, by cquating the right-hand side of (2.8) with 7 =0,
to 0. The coefficients of x, % a® and %7 in these expressions are
determined by the tables given.

“Whether the velocity # is given sufficiently accurately within the
range 0 < x = @, depends on how rapidly ‘the series converges,

i.c., on lhe magnitudes of u,fu, and a,. A rough idea of the error
committed in using the first four terms only can be found by assum-
ing, as seems very probable from the form of the equations, that
k', k,” are everywhere greater than or equal to ¢," and gy’
Tespectively.

If the error, as given by this ineguality, is sufficiently small then

. the method can be nsed to give the velocity distribution as far as

x=a2-
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1 s
»ns If not, the series will only give the velocity as far as x = #, where
to ] fia is less than a, and is determined by u,f%, and the accuracy
required.
se, Similar remarks apply to the equation for the point of separation
L, o remarxs apply q % P '
od if it lies within this range.
Z; ] () 1f U is expressible in the form U = w;x -+ 2%,2® 4 48 for a
) 3 3 . 13 &
on range of 0 <z = a, the velocity distribution in the boundary layer
H ns - is given by
ve 1
s [ “32 ’
: w=1t [,'% 4 41y f'x® + 6 (uﬁg5 + - g ) x5
€, ¢ ] S 1
ot 3
Uty u , .
re ; +8 (e z,'-{--“:,k,)ﬂ—}-.... . (25)
[ u, u,*
a [ 4
;ld J and the point of separation, if it exists in this range, is given by
3
1€ ; Uy ., TS T
3 : ():fl”x+4_3.f3’x3+6(—1-g5 + by )xs
i : ", i S
;9: i u- U N
- ? +8(h F ) L L (@5
. un,° 1,
2' i
s "Thie coefficients of %, 22 and x* in these expressions are determined by
s 1he tables given.
d ] As in (D), the error can be estimated by assuming that Ay’ k"
Pl - e . ' » VERIY N .2 I
e : are everywhere greater than &', &,” respectively (k;’, k," are given
. f in Table 1). x
’ f (d) 1f, however, it is necessary to introduce terms in 27 or higher
powers to obtain an adequale representation of U in the range
: e 0 = 2 X q,, it is evident thal the tables given will not be sufficient
. -~ -~ 4 . g .
1 1 10 determine the velocity distribution .n the entire range.
! 1 With the coefficients as given in Table 1 the most useful way of
s applying the method seemns to be lo express the velocity U in the
f form (1,2 4+ 2,x%) with 14 less than u,, for as large a runge as possible,
" and then proceed as in (). Allernatively, if the minge covered by
this means is too small it may possibly be increased by expressing
- R the velocity U in the form (u;x - 24,2 4 %4%%) with u, less than u,
' 5 and 5 less than #,, for as large a runge as possible, and using (c)
: above,
P Similar remarks apply to the non-symmetrical case,
BN If the range of the solution, as given by the above means, is not
| sufficient, one must either find some means of continuing this solution
} or clse determine morz of the cocefficients required by the present
! method. Belore the latter alternative conld be attempled it would
Co ) : 1
| : be necessary 1o recaleulate the coefficients given to greater accuracies.
. ;
, 3
’ <L !
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We proceed, in the next four paragraphs, to disciiss methods of
continuation. Paragraphs 3 and 4 may be used either to continue
the solution of. the present paragraph or to solve the problem
independently. Paragraphs 5 and 6 are primarily methods of
continuation since they are step by step processes.

The method of this paragraph is used (see paragraph 10) to
determine the velacity distribution for the flow past a circle. Some
of the velocity profiles are shown in Figs. 2, 3, 4, § and G.

3. Kdrmidn-Pohlhausen’s Method —Summary.—The differential
equation given by Pohlhausen may be put in the form

% fw+fUA) R 3 )

where dashes denote differentiation with respect to x, U is the velocity
in the main stream at the edge of the boundary layer, z is equal to
8%fv, & is the thickness of the boundary layer and 2 is the non-
dimensional quantity U’z. The {unctions (1) and g(4) are independent
of the particular problem under consideration and have been
tabulated by the present writer in Table 3.*

In certain circumstances this method breaks down owing to"2
becoming-equal to {2. The corresponding value of dAjdx is infinite,
It is found that, in general, A then becomes imaginary for an interval
of values of . A modification due to Dryden may be used in these
circumstances. A description of the modification is appended to
this paragraph.

The method consists in solving equation (3.1). The particular
integral which is required is given by

U'z=7-052 . .. S .. (3.2)
at x = 0.
The point of separation is given by
Uz=—12. .. .. . . .. (3.3)

The vélocity distribution in the boundary layer can then be expressed

in the form
-—r()+x{ﬂ U

Again, F(y/8) and (:(y/é) are definite functions independent of any
particular probiem and are shown 5mphxcally in Figs. A and B.

A neater mathematical expression can be found for equation
(3.1) by putting it entirely in terms of 2 and x, viz. :—

m U’ U’
=GN+ . N X

* A quartic form for # is assumed, see pp. 17-19 below.

e AR mmaine

......




of
1ue
em
of

to -

me

1al

ot}

o S

e ad
- .

15

The particular integral required is given by 2=7-052 at x =0.
(That the differential equation given by Pohlhausen could be put
in the form (3.1) or (3.5) was pointed out to me by Dr. Goldstein.)
Unfortunately, difficulty arises at the point where U'=0 (i.e.
2 = 0) since this is a singular point of equation (3.5). An infinite
number of integrals pass through this point and thus a straight-

forward application of a graphical or nurnerical method of integritioun

is of little value, in this neighbourhood, owing to the_ difficulty in

choosing the correct value of di/dx at the singular peint.

In some cases, for example for flow past a circle, this difficulty

. can be overcome by expanding 4 as a power series in the neighbour-

hood of the singular point.
If we denote by x, the singular point, then we find
L= Ay(x —xg) + s (v — xp)® + Ag (x — x0)° + .
where

hy=1 -5::—:: A, + 0-018 4,2 ++ 68:108

"
o
-

lg=243 —1-195 2 4 + 0-0135 =2 2,2 + 0-0021 4,
1y u,* o

+0-75 =2 7, + 0-0i8 4,3, + 51-081 s

2 %y
n :
—5’15021;—{-:, - . .. .. (3.6)

and U is given by
U = uy + 1y (¥ — x)% -} 25 (x — 5,)3. .. . (3.7)

7, is then chosen so that the integral in the neighbourhood of the
singular point joins on smoothly to the one found by the usual
methods of integration starting from 2=7-032 at x =0. This
series for A can then be used in the neighbourhood of the singuku
point and the usual methods of integration used again once the
singular point has been passed.

The value of this series for 2 depends entirely on the rapidity of
its convergence ; if the derivatives of U are large then it appears
to be of little value.

Details—Integrating equation (1.1) for » between the limits
0 and oo we have

©® 9, Y ® Ty cnl®
\[u_ %51' (1w — U3 dy+ Jo Y oy b= -a.;’:]o ' o (3'8,)

o
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Considering nowJ v E;-‘ , integrating by parts and substituting for
0

dv/dy from equation (1.3), we find

©  ou ou
f 5 & = _[ vy (4 — Uy = j w=Ugdy (39
since [v (4 — U)] vanishes at both top and bottom of the boundary

layer. (The term U is introduced to ensure convergence of the
integral.) Therefore (3.8) becomes

(3] w
jo aaz: (#* — 303 dy —U J %-dy =9 3u]0 o (8.10)

The boundary conditions for u are
(i) 4=0wheny=20

() «u=1U, %t:%il: .=0wheny= o0
(iii) » 5};= —U(‘[Z—%wheny=0.

This condition is obtained by using equation (1.1) in conjumftion
with condition (i).

TFurther conditions can be found at the wall by repealedly
differentinting equation (1.1) and using condition (i),

§"u__ 0 8414 _ 8u> a“u).
e 5 =0 v5i=~(5) &z

Now # tends asymptotlcally to U as y~tends to infinity in the
accurate solution of the boundary layer equations. This leads to
the assumptions made in this method.

Assumption 1.—Assume that for any value of x a length 9 exists
such that for 3 > 4, (U — ), »,

w0 ' © 2 o 9
ja (U — 1) dy,!é = (U—n)dy and _[é = (U —u)2dy
may be neglected. Then eqguation (3.10) becomes

59, o . [0 ou on
jog_;.w—w)dy-bfa(zy_r[,,y] AT

J

a (6 i d
i.e. — 2 t o [J e ’
Le. -[n (1?2 — 31U dy ix Jo 1 dy

. ) - , 2n9 ,
_l_u-—;Uz—UuJé-a _’[a)]' (31

I
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Assumption 2.—Assume that the boundary conditions which #
satisfies when y is infinite are satisfied when y = 6. Hence

(s = U, [%‘]6 =0.

Therefore equation (3.12) becomes
d (9 d (0 LA
25 L e 2 U dy — U — S
10 + 5 Io (* — 403 dy—U b Jo ndy =y [ay:l (8.13)

with the sune boundary conditions as in equation (3.10) except
that the boundary conditions in (3.10) when y is infinite apply in
his case when y = 4.

Assumption 3.—We can satisfy five of the boundary conditions

ou on
,55)=0,Z,}-2=0.1t_y=6

o%u ,
u==0,v53’-2=—UU aty=0

u=71
e (B4

4
by assuming +for « a quartic form in y, whose coefficients are
functions of x, say,

u=a(x)y+ by +c(x)y*-+d(x)y. .. - {3.°5)

The boundary conditions are just sufficient to determine a, b, ¢
and d.  Then substituting this expression for « in equation (3.13)
gives an ordinary differential equation for 4.

A better approximation might be expected by making x a quintic

and satisfying the five boundary conditions of (3.14) and an additional
au
one %’1—; =0aty=0. A sextic woild be made to satisfy the six

- - P
Jast named conditions and an additional one -%7, = (aty = ¢, and

so on. Of course, in general, the velocity distribution in the houn-
dary layer cannot be accurately expressed as a polynomial in y;
to assume. any such form is necessarily an approximation. Pohl-
hausen has, however, shown that a satisfactory approximation is
given for the flow past a straight wall by assuming a quartic form
for the velocity distribution, thus making the gradient and curvature
of the velocity profile correct at the top and the curvature correct
at the bottom of the boundary layer. Any further increase of
accuracy by assuming quintic or higher polymomial forms for «
does not seem to justify the added labour. It will be seen luter,
too, that for the quartic form a geod agreement is obtained in the
case of flow past a circle when the resulis are compared with those
given by a more accurate method. In the latter problem the point
of separation, as given by the present method, lies within the limits
of crror (2°) of the more accurate soiution.

«F
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‘We shall, therefore, discuss the quartic form more fully as being
genérally sufficient to obtain a good approximation to the velocity
distribution through the boundary layer and to the point of separation
of the flow.

"The Quartic Form

#=ay + Uy + ¢y® +dy .. .. . (316
a, b, ¢ and d being functions of x.

The boundary conditions are

ou 0% -
u=1, o y—Oaty-é .. . .o (8.17)

l“-

Yor T
These give ) o .
=U(124 2)/65, b= —UU[2 =—TU1/20%,
c=—Ud—- 2126, d=U(6— 3)/66, .. .. (319

where 2 is the non-dimensional quantity U’¢%/» and ‘dashes denote
e differentiation with respect to x.

ou-—_UU' 14=0a{y=0. .. . .o .o (3'8)

. Making use of these values we find _
0 ud '
f wdy=pR@®+y . . . @)

522
. '14°dy ,,{0<734+ Arg) e B2

Substituting these values in equation (8.15) gives

«,' U6 ., . i 08 e L
\ " ~ 4 U [79U SUU] 73 (U UU)
| dx 37 _U& 5 U
; TR T i e ]
‘ ’ - .. - ce ot <« (322
Put z = 0.
“Then
'. dz 0-8[~-9072+1670-4U"z—(47-4U"+-4-8UU")2-U'(U2+UU"):7]
. dx U [-— 213-12 + 5-76U'z + U"-‘"'-‘]
: . . .. (3.23)
! U, U’ and U” being given, this is a differential equation {or z. There

is a single infinity of integrals of this equation and the only difficulty
.remaining is to choose the correct one.
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At the origin (the forward stagnation point) the velocity U
vanishes and with it the denominator of equation (3.23). It can be
shown that ualess the numerator of the right-hand side of (3.23)
also vanishes .0 integral exists having a finite value at the origin.
Thus, when x =0
Uz® - 4740222 — 1670-4U0'2 469072 =0. ... .. (3.249)
This defines z at the origiu as the root of a cubic equation. If'is
interesting to note that this cubic form is not an artificiality intro-
duced by assurning a quartic form for ¢he velocity distribution, but
seems to appear if cubic, quintic or sextic forms are assumed for the
velocity distribution,
Now 4 = U’z and equation (3.24) is a cubic in 1.
Thus,whenx=0,A=7-052,17-750r — 70.
We have, now, to decide which of these values to choose. Since
the particular integral required is defined by a condition at the
forward stagnation point, it is necessary to consider

(i) the integral from the forward stagnation point over the
upper surface of the hody ;

(i) the integral from the forward 'stagnation point over the
lower surface of the body.

For both these cases the positive direction of the axis of x is
chosen in the direction of flow in the neighbourhood of the origin.
Thus, U’ is positive at the origin in both cases. This immediately
disposes of the negatlive value, since z is always positive.

To choose between the positive values is more difficult and
involves a consideration of the point of separation as well as the
stagnation point. Separation occurs when 2 = — 12, If we denote
by U0(7) the denominator of the right-hand side of (3.23), we see
that 0(%) = (A — 12) (2 + 17-76). :

Moreover, the required integral for 4 varies continuously between
its value at the forward stagnation point and its value at the point of'
separation, as x varies from zero to its value at the point of separation,,
1f, now, 2 = 17-75 when x = 0, 0 () vanishes at some point between
the forward stagnation point and the point of separation, and the

N A

. dh. . . . P dr. ..
corresponding value of 3518 infinite. The infinite value of 7 implies.

an infinite value for the velocity v indicating the breakdown of the
approximate method. Hence, if 4= 17-75 at x = (, the method.
always breaks down before the point of separation is reached.

I, however, A =7-052 at x =0, this difficulty is no Jonger
necessarily present as 0(2) does not vanish for any value of 4 between
7-052 and — 12, and this initial value for 2 must be the required one..
Hence the particular integral of (3.23) required is the one defined by

Uz=7-052atx=0. )
This value was used by Pohlhausen {foc. cit.) without mention of the
other two, :
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Even when 2 = 7-052 initially, 2 may take the value 12 during
the course of the integration of (3.23). As above, this must be taken
as an indication that this approximate method has broken down.

A modification of Pohlhausen's method, due to Dryden, is of
value when the ordinary method of Pohlhausen breaks down. A
surmmary of this modification is given at the end of this paragraph.

For purposes of calculation (3.23) can be written in the form
{3.1) where f(2) and g(2) are given by

) _ 72576 — 1336-324 + 37927 4. 0-8%
)= T3 10— 5761 —

(3-84 +0-82)
¢ =g i — 2

and are tabulated in Table 3.

The Solution of the Differential Equation.—To use Table 3
conveniently for the graphical solution of the differential equation
requires a method rather different from the usual one.

For any value, 2, of 2 used in Table 3, the curves U’z = 2, are
drawn in the (z, x) plane. The value of dz/dx at any point of une of
these curves can be obtained from the differential equation and
Table 3. Beyond this point the solntmn follows the lines of the
usual method.

To determaine the value of dzfdx at x = 0 from (3.1) we notice
that

I v
x_’i’of D12, ] _[f )U”z-.‘-U’z'):L_o.. (3.26)

“The value of dzfdx is then found by algebra. -
Ull

‘We find (dzfdx), = — 5-391 ~ - (3.27)
The corresponding value of
(da)dx),is + 1-661 v . (3.28)

UI

The alternative form (3.5) and its drawbacks are discussed in the
summary. :

The Velocity Distribution.—From equation (3.19) we see that
u o (12 4— NEY ) (=2 _/))

'—-'-'——--——-—---_—-
l
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This leads to equation (3.4) where

L F(y/0) =2 (y/8) — 2 (/0" + (5/9)* ] |
- of ‘
1 1 .o {3.30)
A G (v/6) =5 (3/0) — } (/) + 1 (y/0)° —-g(y/wl !
m 3 and are shown graphically in Figs. A and B. " ‘
- b The quantity 6 which is determined by this method is not ‘
\ physically very significant. The skin friction is, however, given_by
25) o _;1.(72+Z)U. 4
« ,L 'af)">o = —_——-——66 %
Ience the method may be considered as primarily concerned with ,
delermining the skin-friction. Dr. Goldstein suggests that should :
3 it be required to use this method to determine the skin-friction
n without starting from the forward stagnation point—for example,
it may be desired to finish off quickly the solution given by ‘the
method of the Jast paragraph when thaf method is not sufficient to
re reach the point of separation—the correct value of 6 to use for starting 1
of the integration is given by making the skin-friction correct at the :
~ starting point. Many more examples will have to be discussed i
e before it can be seen whether this method of procedure gives a
: better result than that given by using the method of the present
e paragraph throughout. On the face of it, it appears very probable
‘ that it should. |
e . .
o ) Summary of Dryden's M odification.—This method may be used \
\ when the ordinary method collapses owing to 4 becoming equal to 12.
4 The method makes use of equation (3.18). A quintic form
) n=a(x)y + o)y +cl®)y*+d@)y +e(x)y® .. (331)
!

1s assumed for 1,

This value of  is made to satisfy the boundary conditions (3.14),
a being treated as arbitrary. Thus d, ¢, 4 and ¢ are determined in
terms of a, U and 2 by (3.14). *

A form
a-_—-.ao-*-al),, .. .. .. e . . (332)

where a, and a, are numerical constants, is assumed for a. Separation

. a
is found to occur when 2 = — ;1—0 = J, say.
1

[

The solution for 2 = 0, i.c, U = constant, is known and a, is
chosen to make the solution of the present method in good agreement
with 1he known solution in this case. .
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dx= —IJ— +22l1(2)U” . .. o . . (3.36)

22

Leaving the value of a, undetermined we find, proceeding exactly
as in the ordinary method,

dz _P(x,32) '
=000 PO £ X & )

1
where P and Q involve a,. To prevent ;—; becoming infinite Q (1) must ..
not vanish. As in the original inethod the equation
Q) =0 .- .. . .. . .o (83

is quadratic in 4. It is found impossible to make the roots compiex
by suitable choice of a,. Denoting by 4, and 4, the roots of (3.34)

. . A
where |2,] > ] 2., a, is chosen to make the ratio }-"’ l as large
‘s
as possible.

When this condition is applied we find 4, = 48-52, 1, = — 30-89,
s=—17-18and A =4-365 whenx=0.

Thus, the modified method gives

% ¥4\ ) N?
5= (89401 -5 %) 4 (— 134 4,-0-84,1)(%)

N 4 NS
+ 012 -0-622) (3) + (033 +0-173) @) .. (3.35)
and

dz _p (%)

where

4 _ 0-8(— 590519 + 13783-34 ~ 5.9 — 2]
P2 = = 1500-63 — [7 60374+ 7

e A Ve rehat S esdnwaiatovs o ense
SRS AR SN % A

0-8 (14-6947 — 7
—1500-63 — 17-6337A + 22)

v Sas

P (%) and g (4) are tabulated in Table 4.

This modification gives a method which is applicable to a wider
range of problems than the original. The modified method is not
quite so accurate as the original, when the latter does not break

down, but it seems to give a valuable approximation for many cases
in which the original collapses.
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as in the ordinary method,

dz  P(x,3) ’
=000 N ( X 1

. iz e o
where P and Q involvea,. To prevent ;7 becoming infinite Q (1) must ..

not vanisli. As in the original method the equation
Q=0 . . . .. .. .o (334

is quadratic in 2. It is found impossible to make the roots complex
by suitable choice of a;. Denoting by A, and 4. the roots of (3.34)

where |2;] > | A,]., a, is chosen to make the ratio l ';-"’ as large
as possible. *
When this condition is applied we find 4, = 48-52, 1, = — 30-89,
s = — 17-18and A = 4-365 when x = (.
Thus, the modified method gives
2 (180401122 ) 1344.0841)(3>
U 6
+ (012 —0- 622)( ) + (0-33 +0-172) (%) (3.35)
and

d_ ()

="t ce el e . (336)

where

4 _ 08— 590519 + 13783-32 — 53-99 — 77
PR = (= 150063 ~ I7-6357 + )

0-8 (14-6047 — 2)

7N = (Z1500-63 = 17-63374 + )

2 (2) and ¢ (2) are tabulated in Table 4.

This modification gives a method which is applicable to a wider
range of problems than the original. The modified method is not
quite so accurate as the original, when the latter does not break

down, but it scems to give a valuable approximation for many cases
in which the original colapses.

Leaving the value of 4, undetermined we find, proceeding exactly
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An alternative method, which can bhe compared with this
modification when the ordinary method breaks down, is indicated in
paragraph 8. This comparison has been made by the present writer
in a particular problem and the agreement found to be good. It is
hoped to publish the results of this cornparison in a later paper.

4. Bairstow and Green’s Metihod.—The principle of the method ‘was
suggested by Dairstow and elaborated by Green (loc. cil.).

Summary.—The method is to expand , the stream function, as a

power series in y whose coefficients are functions f; of x. Successive
vilues of f; are found by recurrence formulae, involving differentiation
of the preceding values, except in the cases of f, and f,; f, is deter-
mined by the pressure gradient. The difficulty in this method lies in
finding f,. which is related to the skin-friction, and its evaluation
seems to involve much hard labour. In any case, the determination
of the coefficients after f; involves numerical differentiation, a process
which at best is not very accurate.

The method is closely related to that of the preceding paragraph.
Moreover, having determined the skin-friction by the method of the
last paragraph, the method of the present paragraph could probably
be applied to give a closer approximation to the velocity in the
middle of the boundary layer.

Again, this method gives a. possible means of. continuing the
solution of paragraph 2; the skin-friction which is required for
starting the solution of the present paragraph being immediately
obtainable from the solution of paragraph 2,

As presented by Green, the drawback to the method is the trial
and error step-by-step methed of finding £, and the special difficulties
which oceur in the neighbourhood of the point of separation. It is
anticipated that in a case when the method of paragraph 2 ceases
to be of value owing to the magnitude of the derivatives of U then
this step-by-step method will become too cumbersome 1o be of value.,

The pressure distribution used by Green is nearly the same as
that given by IHiemenz for about 50° from the forward stagnation
point. This latter distribution was used by the present writer
(see paragraph 10) for the calculations of the velocity distributions
for various other methods. IHence, as far as 50° from the forward
stagnation point, Green’s results have been included with the others
in Figs. 2, 3and 4. Unfortunately, the two pressure distributions are
not in good agreement in the neighbourhood of the point of separation
and hence Green’s solution cannot be compared, immediately, with
the others in this important region. Owing to the labour involved, it
was not deemed necessary to carry out Green's calculations using
Hiemenz’s experimental results.

Delails—Put x = d¥', y = qdy’, u = Vo', v = Vo', U = VU’ and
P = pV?', where d is a representative length and V a representative
velecity of the system considered.
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Equations (1.1) and (1.3) then become

,on' - ou ap' 1 o
B’+ Y -ri—x'+REy"~' .. .. . 4.1)

' o'
'+8y R ( 8/

where R = Vd/»,

The method could be applied without reducing the equations
to these non-dimensional forms, but the subsequent work could
not be expressed so conveniently.

The dashes in equations (:1.1) and (4.2) can now be left off without
confusion,

We try 1o obtain a solution of (4.1) in the form

. Ry=fog+ hit oo O UK
where the f’s are functions of x only.
Then
Ru.-:f(,y+f,%—_,+.... R 7
Y
—Rv=f'g+h5+ - .. .. .. (4.5)

where dashes denote differentiations with respect to x.
Substituting from (+.4) and (4.5) in (4.1)

i %3#”_1 611 7=l - /;{7:]1)”' §1(—7:1’1-’:-:11—)-’#_l
w2, 352(:(:; Jaml . (48)
e 3 _wzglf{}—]fa_ . | red?
+ Eoyuf‘;j‘ L L W)

Therefore, equating coefficients of powers of y we find when
a=0  fi=R>dpjdx . .. . .. 4.8)
f2=0 ‘e . .o .. .. (‘l.g)

a—1 ‘[}_ 1

u>1 pilfﬂ—lf’n—ﬂ—l -——(—a—:ﬂ T ,fa+1 (4.10)
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In particuiar

4.1) ]
IZE 1: 1798 fufo
42) | 0 (4.11)
3i/4 1fo= 17a 1IN .
ons-+ Theoretically f, has to be found by applying the boundary conditions
ul 5 at the edge of the boundary layer,
ie.
ut - w=U, oo
=U, 3 =0.
- Assuming, as in paragraph 3, a finite thickness for the boundary
3) layer, i.e. that the two Jast named condmons are satisfied for a !
’ finite value ¥ of », we have j
" . J
RU=fd+ 5+ hl+... i
” (4 12)
e, - e
K O=hthyHhgt
3) Llimination of § between these equations gives a condition for |
f finding f,. !
e : For purposes of calculation a finite number of terms only, of these J
7 i series, can be used. Consider the case when n terms of the series for # {
’ are used. This corresponds to satisfying the boundary conditions for
/ " s P g ry
1, 5)—’;, . a)’: at y = in virtue of equations (4.8), (4.9) and
’ ) {(1.10) and equations (4.12) correspond to satisfying the conditions

w=U and 2 =0 at y= .
oy

To determine f, at the origin for flow past a circle, Green uses

the series with three terr:is ouly, viz. : -
. RU = f, % + f, #4/2!')
- (4.13)
O=fo+fi7

.
AN Sl Wt an e T L O VU
N R drints ey

Thus, since f, is zero, three terms of cach of the series are used.

. i This corresponds to satisfying three conditions at y = 0 and two
i conditions at y = ¢ as compared with Pohlhausen’s two conditions
H at y = 0 and three at y == §.
: Lliminating % between cquations (4.13) gives
‘ fe==24RU. .. .. .. L (314
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The skin-friction in the neighbourhood of the origin given by

the methods of paragraphs 2, 3 and 4 may now be compared by
considering

im 17D 2
x—>0U0A"/ dx 09/ gm0

The three values are 1-233, 1-20 and 1- 414 respectively (the value
1- 2\;') given by the method of paragraph 2 is, of course, the correct
one

Differentiating (4.14) gives the derivatives of /,, apart from the
difficulty of numerical differentiation, if f; = R*p/dx is a tubulated
function. Thus the values of the / s at the origin can be found
subject only to the limitations of numerical differentiation and the
approximation in (4.13). Of course, this latter approximation could
be improved by using more terms in (4.13) and solving the subse-
quent differential equation for f,, or alternatively using the correct
value of f, as given by the method of paragraph 2. The latter
method is recommended.

Green then developed a step-by-step method of calculating f,.
starting from its value near the forward stagnation point, and
correcting an extrapolated value at each section, so that calculation
of U at the section based on f; should agree with the correct value
of U. Some details are explained below.

Green’s Step-hy-Step Method for Delermining fo~Tor the case of
the circle the method consists in proceeding by steps of §° around
the circumference. We may suppose for example that f,, f,” and f,”
are known at a point 40° from the forward stagnation point but
that owing to the difficulties of numerical differentiation the value
of /,"" is only known approximately. It is required to correct this
approximate value. Using this approximate value in the series

s = U +5 oo+ 55 o + 55 U D

. 2 4.15
(o )asr = (o' )awe + 5 () + Sif(fo" Vs €.)

(fo")ase = (fuVave + 5 (S0 )aor

the correspunding 'values of f,, f,' and f,” at 45° can be obtiined.
From these values fy, f; ...... f at 453° are determined {from the

recurrence relations. Also fy = R¥%p/dvand f, = 0.
Now

— == === ] LR - cene .e .o .o o 4.16
Jo 0y +./03 rfo--'+ ( )

and hence the value of B—:- E—-] at 45°is determined.
[1]
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The corresponding value of == | can then be determined by
0 ~14s°
integration.  Since [U,;) is known, the corresponding value of

(fu)sse can be determined.  The assumed value of (f,"") o+ is correct
when the value of (f),s thus found and the one originally found
from (4.15) using this value of (f," ), are the same.

The reader is referred to the original paper for further details of
this step-by-step method and for the special method required in the
neighbourhvod of the point of separation.

. . . 0% .
It is interesting {o note that the condition (3—_)') = 0is
Yy

not salisfied by using a finite number of terms of (4.12). This is
probably connected with the difficulty experienced by Green in
making the velocity pass sinoothly over into the correct value as
given by the velocity in the mainstream. Green himself smoothed
off the curves by eye, and this is probably sufficiently accurate for
ptactical purposes. More accurately; a solution of the equations
could probably be found on the assuniptions valid near the edge of
the boundary layer, that 4 and U are nearly equal, and v is small ;
and Green’s solution joined up with this one,

5. The First Step-by-Step Method.—Summary—~The method
makes use of the expression

. ” 14,
ﬂ,_vlw — " (0)] —Z,f
ox ~ v .
14
[7 3" [{1/:” — " (O)}r —~ Z’ %y] dy
+ 2y L e .. (5.1)

(when the argument of any function is not specified it is to be taken
as v, and dashes denote differentiations with respect to y) to provide
a basis for step-by-step calenlations.

Equation (5.1) theoretically solves the problein, tnt in practice it
cannot be used straightforwardly owing tothe inaccuracies intraduced
by numerically differentiating a tabulated function twice—a
difficulty which is inherent in all step-by-step processes.

TFor purposes of this ruethod we can suppose y", 9’ and y are
given as tabulated functions of ¥ up to and including the point
%2 = a. An approximate value for »” it 2 = a -4- Aa can be found
by extrapolation and the corresponding values of v’ and y found by
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integration. Briefly, the method is to correct the extrapolated values

of " by meuans of a trial and error method, using (5.1) and the
relation

2
(o + Aa)—(% wpdde=rE@ L (62)

Details—To obtain equation (5.1) above, we notice that
equation (1.1), on making use of the stream function, becomes

Sy oy 0y 1dp 3
dy 0x8y ~ Ox Oyf  pdx 8_): s - (5.3)
Therefore

5@/ 5)=C5-H/E) - e

o herefore

2y _1ap

0 oy _ d ay P pdx

a ay v @)2 . (55)
oy

L
since => = 0 wheny = (.
Equation (5.5) can be written

_8_{821/) 0%y 1dp ld

2y _ v (& 3}’“/:-0 g dx”)
ox oy lJ, (21_1_;_:
dy

Integrating by parts, in order to reduce the third order differential
coefficient which occurs under the integral sign to a second order one,
we obtain equation (5.1) above, since

” ” 1l
i @) = O (—/;’y_o _ iy
yer0 5 =0. .. .. (8

[Beth the numerator and the denominator in (5.6) vanish, and the
limit is given by differentiating them both, .c., the limit is

[(7 ?_u _ 1(1])\ 8u a'r
o pdx, ay o

from equation (1.1) and is zero since # and v V'\m:h and E)u/?)_y does
not, at the wall (except at the point of separation).]
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If the constant term u” (0) had not been introduced the result of
integrating by parts would have been un integral which diverged
at y = 0 and a function which was infinite there. Introducing this

constant overcomes this difficulty.

p”, v and yp being given up to and including a point x = aq,
extrapolation will give an approximate value for ¢,y A, and
then by integration the corresponding values of y'o4 Agnand
Vot pa €an be found. The method consists in correcting tne
approximate values of 9" 4 oo first when y = 0, then when
y == AP, 2Ap, .... where Af denotes asmall step.

The value of 9", 4 nq (0) has to be corrected first of all.
Difficulty arises at this point, and the simple method which can be
applied to the remaining points is not applicable here. If we
differentiate (3.1) twice with respect to y and put y = 0, we find

a—i[y;” @)=» P (0)] " (0) .. .. .. .. (5.7

Thus ‘
¥ o A (0) = 94 (0) + 7. La. 9" (0)/9"4 (0) N CX)

Hence we require to determine v,!® (0) from the data given at
x= qa. For the initial step 1,'® (0) could be found, of course, from
thie solution of paragraph 2 by repeated differentiation of the differ-
ential equations for the f's, g's, etc. (this process involves no loss
of accuracy since the determination of the third and higher deriva-
{ives is a matter of algebra) but this method is not applicable to any
step beyond the first.

A method which is applicable to any section can be obtained in
the following manner. Goldstein (loc. cit. p. 2) gives a method of
continuing any given velocity distribution

w=a, ¥+ a0tk ... atx=0.
He states that the conditions for the absence of singularities in the

continued solutions are N
bolo + 2va, =0, a;=0,
(502 + pyayJo =0
(6))rPag =2 pp, /0% clc. . . .. (5.9)
where

d .
—£=pu+pl.u+p2x~+

Tor any value of x the method of paragraph 2 gives the velocity #
as a power series in & whose coefficients are functions of y. These
coefficients can be expressed as power series in ¥, for sufficiently
small values of ¥, and by derangemnent of the resulting series for #,
u can be obtained as a power series in 3 whose coefficients are

af
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Asmight be expected this series satisfies the conditiors
This has been algebraically verified

functionsof x.
for the absence of singularities.
in detail by the present writer.

Herce, using the conditions for the absence of singularities we
can write for all values of %

V= 0 =Lyt o 0F - a0y

vp :_,Pl "+ (5.10)
where
‘ Do = — dpldx and p, = - d2pldx?
ie.,
6
e WO=2[ro-ro+lyr By
a-ﬁvi’lys_*_ ] . (5.11)

Given p,, zbl and a table of values of " this serles determines the
value of '* (0) to one place of decimals less than »” (0).*

Thus'(5.8) and (5.11) determine the correct value of %", 4 Aq (0).

Next, we correct the value of y" 4 aq (Af).
notice that

From (5.1) we

&)
Ox at/\a, AB
v [p” ! 0 ‘Zl)
p 0+Aa(Ap) — Y a+Aa ( )] dx u++Aa AB
= V"G+A0(Aﬂ)
JAY]
+ 2oy B [

’/’"a-}-Au (%) [” {»"q +/§u(y) - 'P,u-!—-Au (0

U 17<§£>a+my] it

Wt pa (PP

(5.12)

* Theoretically, the result used is

i 6 17 v
A5 () = m & [ _ o
w0 O =, 005 [ ) = v @+ 55 4
?_P_".P_‘ ,s-l
- 303 S
In practice, the limit is found by substituting fairly small values of y in the

- expression on the right-hand side of equation (5-11) until a constant result is
obtained.
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‘The integral can be evaluated by the Trapezium Rule since Af is
supposed small. Symbolically this rule can be written

M¢(y)d;v=[‘{’—(—é£)~im]mf O (- &)

b (A p) is immediately determined from the extrapolated value of
p” atNu (AB)

‘l’”a+Aa[}’{'/,"“'1"&“-'/)"“'*'&“ }_—( p>a+Aa ]

_ lim
# (0) = y—0 20 A
0] ;
. .\ .. .. .. .. .. 14
ST Ot 230 14

The term in the integral arising from $(0) is, in general, very small
and it is sufficient to use an extrapolated value of p!; A, (0)

in determining it.
In use, for the initial step ', _3aq(0), ¥"¥a_2a4(0)
9™ Aa 0), 9'a (0) were found fromi the solution of paragraph 2

. and 1/;“’ a+ Au (0) found by extrapolation from these values.

Thus Jap«ﬁ(y)dy is determined, and with it the value of
[} .

(?_'!’) . If the extrapolated value of " at «+ A«
/ot pa, A

were correct (and hence the corresponding value of y found by

integration) the value of (%—E) A found by the above method
a g
would satisfy .
vy .
pla+ a0 — (32 =@ e

The value of 9”1 Aq (A B) is varied until this equality is satisfied.
Both terms in the right-band side of (5.12) are very sensitive to
slight variations in 9”54 Aq (& f) and the required correction can, in

general, be found at the first or second trial. *
Thus the values of 9 o0 Aus ¥at+ Ao+ Yat pe a1 corrected

at AB.

The process is repeafed 1o obtain the corrected valnes at 248,
{70 | A , the only difference arising from the evaluation of the
integral.

J OB .
We consider the integral I = Jm é () dy. We can suppose

0
that the values of " (rAp)and y(rAf) forr=1,2,.... (n —1)
have already been corrected.

e < A




Using the assumed value of »” (#A f) the value of I is required.
The easiest method of evaluation is to write :

n-naf
fo +j(n haptOIY . (619

The first of these integrals is supposed known and the second can
be obtained from the Trapeziun Rule. Alternatively, greater
accuracy is obtained by writing

(n=2) A
- ZL d+J( ‘,Aﬂ¢()d'y BT

0
and using Simpson’s Rule to evaluate the second integral, i.c.,
nAp
(b=-2)A8

I=

400ty =3Lpman +eE"2ap+ 4601000
(5.18)

Thxs latter method can be used convemently to determine ¢’ lrom
»”. The easiest and most accurate method of obtaining y from »”

ot and ' seems to be by means of the Euler-Maclaurin Formula ; this
can be written
nAp nAﬂ
K = R B 1 AN B PN
(/—\ﬂ

— Sy man — v (T 1AM H0(a8Y | (519)

The Length of the Step.—The magnitude of the step Aaq, at any
section, is determined by the accuracy required and the maximam
value of 8%y/ax? at (he section considered.

-~

From equation (5.2) above the error in the value of p at

= a4+ Aulis
oy
2

and the corresponding error in u is

E)-u

OL (Lad? i /

Thus, if ue is the maximum error permitted in « in the step A,
La is determined from the relation

= (Do) f’—") By

‘ The value of 3* u/a,x- at the initiul step is, of course, determined from

the solution in paragraph 2. At any other section, for a particular
value of y, say, f, ¢%u/dx® can be obtained numcrically (roughly)
from a table of values of u for y = £, and thus a rongh idea of the
maxireum value of #*1/0x® at any section can be found. :
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8 required,

O =2 = #10 + e o X oy

(5.16)
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It will be seen from (5.20) above that the length of the step, at
any section, varies as the square root of the error permitted.
Unlortunately, the errors committed at each step may be cumulative
—a drawback inherent in all step-by-step methods. The principal
drawback to the method is that the steps Ae which can be tuken
are rather small. !

The case of flow past a circle does not provide an adequate

example of the use of this method since the method of paragraph 2
gives the velocity distribution to within 0-2 per cent. as far as the
point of separation. This accuracy is as great as would be required
for practical purpeses. Should, however, greater accuracy be
required the solution of paragraph 2 could be stopped, say, at 60°
Irom the forward stagnation point, where the velocity is given to
within 0-05 per cent., and the method of continuation used. To be
of value the error permitied per step would have to be less than or
equal to 0-05 per cent. and this would involve proceeding by steps of
10, This, however, is not a case when the method of the present
paragraph is recommended. Generally an accuracy of 1 per cent.
will be sufficient ; in the example just mentioned this would allow
steps of 4-5° to be taken, starting from 60°.

In the case of flow past a thin elliptic cylinier of cccentricity
0-9860 piaced at 3° incidence to a steady streain, it was found that
the method of paragraph' 2 was of no value at all, since the slep it
gave was less than 1/20th of the chord. In this region 8%4/822 is
0{10%), and hence the step given by the method of continuation is also
negligible.

It seems probable that, between the thin elliptic cylinder and the
circular cylinder, an elliptic cylinder will exist such that the method
of paragraph 2 is insufficient to carry the solution as far as the point
of separation and such that the steps given by the method of the
present paragraph make the point of separation attainable.

For the case of an aerofoil, also, the method of paragraph 2 will
not be of value {ar from the forward stagnalion point owing to the
rapidity with which Ou/dx, 9%ufox?, ...... change in that neigh-
bourhool.

6. Von Mises's Method.—Summary.—This method gives a means
of continuing a solution of the boundary layer tquations. It is an
alternative to the method given in the last paragraph. Since,
however, the step which can be taken by this method is no longer
than that of the preceding method, and the work involved per step
is greater than that required in the preceding method, it is not

recommended.
The method involves solving the differential eguation

2.4 Aa _*ut+ a7 %
dy* g Qa

at each step, where z = U? - «® and # i5 the stream function.

p = 0 is a singular point of each integral.
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Details.—The method of paragraph 2 gives y and # as tabulated
functions of y up to a point x = a. We may, therefore, suppose «
given as a function of y as far as this point. To obtain # tabulated
at equal intervals of y, however, requires interpolation. We find,
if we denote by the suffix { difierential coefficients when x and y are
independent variables, and by the suffix 2 differential coeficients

when x and y are independent variables

5. .-G,
2= (53). ().~ (5),» L 6
2;") [u s p<u ) ] ce e Y

By (6.1) and (6.2)
ou au ou
4 5;)1‘{"‘0 —8—5'>1=u 5;)2 N '

Equation (1.1) then takes the form _ ) ]
u?“ U v <ua") 84

when x ‘md p are mdependent variables,
Now, if we write

- e=Utemut . .. .. .. .. (65
. ‘ we find
'
f oz 0%z 0% .
.{ Pk .,—-v\/U—zay- . .. . (6.6)
‘ - 4 Tfurther we notice that ) )
16z Bu ou
The boundary conditions are ’
(i) z =0 when p = oo,
651y z = U2 when v = (, .
(11) z = z; (p) when x = Q.
By use of (6.6), the approximate equation

0z
wraa = =0a(z) . . 69
may be replaced by

6.1)

—

ot s

ATV Wy

2%
et Aa (¥) = 2q () = v Aa /T, — 7, =5 — .. (69

where z,4 ng and z, denote the values of zat x =« 4- Aa and
x = a respectively.
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35 .
As it stands (6.9) invalves double numerical differentiation of a -

tabulated function to obtain any step from the previous one. Hence
it cannot be used repeatedly for numerical calculation. Alternatively,.

(6.8) could be replaced by

oz
Zar pa (W) — 24 (¥) = Da (a)ma%h&a (6.10)
and then as in (6.9) we could write )
azza-i- Aa

Zag-pa (W) — 70 (9) = 7 AaVUlppa—Zagba —Fp
. . .. .. .- .. (6.11).
(6.11) is a nonlinear second order differential equation for z; 4 aq-
Luckert (loc: cit. page 253) lakes an easier form by writing
e a2za+ Aa

Zg+ Aa (p) — 2z, (p) =220u -\/U"a —Zy -——a';;— .. (6.12)‘
(6.12) is a linear second order differential equation for zp4 Aas
since z, is a known function of p. The error in (6.12) would not be:
expected to be any greater than the errors in (6.10) and (6.11).

The boundary conditions are : .
(i) 24+ Aq = O when p = c0. C !
(i) Zg 4 Aa = Usl- pq When p=0. -

Thus, when v = 0 the equation has a singular point. This dificulty
has to be overcome by using the series mentioned in paragraph $,
viz, — T T -

. o ¥t polatANa) ,
Yat+NAa = P at+Aa (0) -L_Z..-_ . "9'3 P00 .. (6.13)

» at+ A
Hyd Ne = ¥ a4+ Aa )y — jf-‘%‘-m—a—)y“ +0(y) .. (6.14)

B : polo+20)
A Y pe O = O (69)

where dashes denote differentiations with respect to ¥, aud
_polatdd [U é&’]

e 4% Ja+ Aa
{6.13), (6.14) and (5.15) respectively, vanish). Then !5  (0) can be
found from the table of values of y”,, as in the last paragraph
using  (5.11) and then (8.8), e, ¥ainc 0) = 9", (0)
+ Aa-v- ¥ (0)/y", (0), gives vy nq (0). Thus, (6.13), (6.14) and
(6.15) give the initial valies of y. z (== U* —2%) and 6z/0 ¢ (= —_ % %ﬁ

. . . . 34

for starting the integration of the equation. Choosing the initial values
in this way, {from series whose asymptotic expressions satisfy the
boundary conditions at infinity, causes the conditions at infinity to
be satisfied antomatically.

(25310) ne

(the terms in 3%, 3 and »* in
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This will give z, and therefore 1, as functions of patx = a + Ac.
In order to express the results in the usual way, # should be expressed
as a function of . Since # = 9 p/dy, and # and y vanish together,

Cfudy
j_fo-;‘—’

and so this step involves an ordinary integration to find v,

Hence, at each step a numerical integration of a second order

differential equation and a numerical evaluation of an integral are
required. Moreover, the steps which can be taken by means of this
method are no Jonger than those in the method of the preceding
paragraph, and the work involved here at cach step is greater. IHence
the method of the preceding paragraph seems definitely preferable.

7. Thom’s First Method.—Thom has given a method of solving
the boundary layer equation to any accuracy required, but from a
practical point of view the method is extremely laborious—too
laborious for repeated application.

e considers a rectangle ABCD within the bouxidury layer, having

its sides AD, BC of length 2x parallel to the wall, whilst AB and

CD are of length 2y.

If 0 is the centre of this rectangle and u, v and dpfdx are the
velocity components and pressure gradient there respectively, he
finds on using the boundary layer equations that, approximately

w =ty — Ryth (1, + 1y — U — 1ty) .
— kv (uy -+ sp — g — 2) + &y .. . (7.1)
where ky = y*8x, k,=9[S, Ry="— (y*dp[dx)[2 and

2y + 1y + s 4 Uy
Uy = )

The method then is to divide the boundary layer into arectangular
net and assume values of the velocity  at the corners of the rectangles.
The velocity at the centre of each rectangle can then be calculated
by means of (7.1) above. The values of the velocities at the centres
of the rectangles being taken as new ** corner velocities ” the values
of the velocities at the centres of these rectangles can be found from
(7.1). But the centres of these rectangles coincide with the vertices
of the original rectangles, and the velocities as found should agree
with those originally assumed.

The process has to be repeated until agreement is obtained to the
required degree of accuracy.

Thom (loc. cit. page 6) uses the method on the flow past a circle
for an angular distance of 20° from the forward stagnation point.

He makes the remark that many cycles had to be calculated to obtain
the result.

» using an obvious notation.

- =

[

o, p b s o
NS

e & e e o2 o

iy mm e s

t




4
2
k)
g
t 4+ Aa. : 8. Fulkner and Skan's Method.—As an introduction, the authors
Kpressed } (loc. cit. page 4) give a complete mathematical solution of the
sether, ; boundary layer equations when the velocity at the edge of the
i bourdary layer is expressible in the form U = kxm, This solution
; contains, as special cases, three solutions which had been given
. ‘ previously.
] () When m = 1, the flow in the neighbourhood of u stagnation
'd order ! point is given. The solution of this problem has been
gral are ; given in paragraph 2 of the present paper. .
i of this ' (i) When m = 0, the flow past a straight wall is given.
eceding ; (i) When m = — 1, the flow between two converging walls is
Hence : given.
ferable. ' The first of these is {hie one of interest in the problem under
solving consideration, but the range in which a relation U = kx holds is
from 2 ' generally very small.  The solution when U = kxm is used as a
15—100 basis for two approximations for larger values of x.
: If we write { = px~} U~tp~tand £ = yx~1 U+ v~} the boundary
having {. layer equation (1.1) can be expressed as a partial differential
B and ! equation with { as dependent variable and & and x as independ-
- { ent variables. In-the case when U = kxm, where m is constant,
i this partial differential equation simplifies and ¢ is given as
b re the ! the dependent variable of an ordinary differential equation whose
- ly, he independent variable is £ The coefficients in this equation are
:ly : functions of m.
~ : The first approximation is given by assuming that the solution !
< ) : for any particular value of x can be obtained by putting » equal ‘
- & i
(7.1) ! to the value of (U’x/U), corresponding to this value of z, in the !
’ ' : ordinary differential equation just mentioned. This corresponds to
the omission of some terms from the original partial differential
equation. In-effect, this approximation is equivalent to replacing
' the original partial differential equation by an ordinary differential
3 gnlar 'equa‘}ion in ¢ and £ whose coelficients are functions of (U’'x/U),
e i.e. of x.
' ‘;g't:i ' An atiempt is made to obtain a better approximation—the
ntres ‘ second—by altering the coefficients in the ordinary differential
alues equation of the first approximation. The coelficients are assumed
from : to be functions of x and are chosen 1o make the neglected terms in
rtices the original partial differential equation smaller than the neglected
agTE iy~ terms in the first approximation.
p From the conditivns iniposed on these functions two methods
5 the : of attack may be developed. The first of these is the one given
I : by Falkner and Skan and the second is due to the present writer.
. . It will be shown, however, that in general one of the conditions
:l_rcle : imposed ceases to be valid in the neighbourhood of the point of
ont. : scparation and therefore the methods should nof be used in that
>tain ' neighbourhood. This involves a serious limitation to the value of
) the methods.
i
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* Details—Equation (1.8) implies the existence of a sfream
function defined by % = 3 ¢y, v = — 0 y[ox.

Transforming equation (1.1) by using variables x, { and, £ instead

of %, y and y, where { = px~ 1 U~tp~} &= yx-tUty~t we find
dHICAREICH
d&)\JEox ox
an: 141 e i
'*[l a'g)“’i“cag- ap =0 ®1)
where ! = U'x/U. ;
In tcrmnsof ¢ and & we find ;
R we= JO L3¢ (8.2) ‘J
+1) . .8¢ [I-1 ]
e~y xt gt | = — —_— 5 H
v = vaL J-M{ }+%a$5{x} ) (8.3) |
The boundary conditions are o ?g
() n=v=0aty=0 ] . i
() u=Uaty= . . (8.4)
(i) u=U=0at x=0when >0 [ H
In terms of the new variables these become ;r
() t=ajas=0at =0 §
(ii) offoé=lat = (8.5) .
(i) 0fjot =T at ¢ = i
Owing to the transformation used (ii) and (iii)} are evidently the :
same ; hence the reason for using this transformation. :
Special Case.—~In particalar when U= kx®, I=1m and is =
constant. ;
In this case a solution in which ¢ is a function of ¢ only, can be ;
obtained. (Indeed a dimensional argument, similar to one gi ~ i
by Blasius (foc. cit. page 1), can be used to prove that ¢ is a fungction )
of & only.) !
If ¢ is a function of & only, equation (8.1) becomes
dNE  om k1 d dY by
m d{ T (4 -(l—é_'z -- Zs—a —t = (} (86) ’
: { E:
with the boundary conditions ¢ i
a i :
=;é=0at§==0. ;
a £
(—g:‘:lﬂtf:%. ?
z
_ L&
— i

Al
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The authors show that, for a certain range of values of m, this

equation has a solution satisfving the boundary conditions. Hence,
within this range of values of m this solution 1s the sclution of

equation (8.1).

General Case.—~For the special case U = kam, discussed in the
last paragraph, we found that { was a function of £ only. More-
over, for small values of x ve can snppose the velocity distribution
at the edge of the boundary layer to be of the form U = kx. Hence

. for small values of x in any problem, { is a function of £ only. Thus,
the first part of equation (8.1) vanishes for small values of x.

. The first approximation is given by ussuming that the first part
of cquation (8.1) may be neglected, even when [ is no longer constant.

i LEquation (8.1) then reduces to

’(a@ ket B L e

fream

stead
> find

&.1)

< 5% e » o
e e TS O N
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(8.3)
2 8 g 98
where [ is a known function of x.

For any particular value of x, (8.7) reduces to the form (8.6) and
can be solved numerically, thus giving the velocity distribution at
the point x considered. .

By putting (=a’y & +a'3 8 4.

and {=a", E4+a", 8+

S.4)

Sem e "2t SN T v A b b v

in (8.1)
in (8.7)

)
reralntoe B ok

7 i (s'nce ¢ = g—§-= 0at &=0)it can be seen that

e ’
6a3= hasnd

I’ ”—-
: 6a"y = —1

is : .
: Thus, this apprcximation is equivalent to making the value of

! 3
i be 5T ,__E correct at & = 0 for all values of x, i.c., to making the curvature
. £€n H

of tbe velocity profile correct at the solid boundary and to making

.

! on
: on 0% .

==, 5= vanish at the edge of the boundary layer.

dy ’ oy* N
This approximation may be compared with the method of
[" paragraph 3. In effect, the method of the present paragraph gives
an ordinary differential equation whose independent variable contains
‘ 4 as compared with the ordinary differential equation in x obtained
’ i by Fohlhausen. The boundary conditions satished by # in the
two methods are the same at the solid boundary and roughly the
same at infinity. The reason why ihe method of paragraph 3 gives
better results than this first approximation is cdue to the neglected
terms in the approximat: forins of the boundary layer equations
used by Pohlhausen being less than in the present method.
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The second approximation is given by assummg that equation
(8.1) may be written in the form :—

e 2 2 83
(5 ~Feigp—sp-Rhe=0 .. @69

where F, and F, are functions of x only. The form of cquation (8.8)

a '\2
is compatible with the boundary condition == ¢ =1 when =4

o¢ e
= (. Once F; and F,; have been determined (8.8) reduces to an
ordinary d:ﬁerenml equation in ¢ and ¢ for any particular value
of x. Yor any pair of numerical values for I¥y and T, the particular
solution of (8.8) satistying the boundary condltxons can be obtained.

This has been done by Falkner and Skan* and the solutions exhibited
graphically.

. To determine ¥, we make; as in the first approximation, the
curvature of the velocity profile correct at the solid boundary, ie.,

P
the values of.(%—é,)e given by (8.1) and (8.8) are made the same.
-0

If we put, ) .

t=a' 2t a'y 8+ .... O ()
in (8.8)
and

L= a2 4 a" 43, P -8 L)

in (8.1), we find
6a'; = —F, (z) B
o Ba"y=—1. )
Thus, the condition &', = a”, yields F; (x) = Il immediately.

The criterion to determine T, (x) is more difficult to obtain.
Idexlly it would be chosen to nnl\e a'y, = a",, i.e., to make the skin-
friction correct in the approximate soluhon I‘his condition is very
dificult to handle analytically since a’, and a”, are defined by the

.. 0f
condition 5—2" =1 when ¢ is infinite. The serles representations
(8.9) and (8.10) are not adequate for this purpose.

1, however, (8.9) is the solution of (8.8) the terms neglected in
the original paitial differential equation (8.1) are

. _b;_é_. e 3432(: 1+l] _':’_.-.t

* Falkner and Skan indicate a region where they say imaginary. solutions
may vcenr,  The present writer bas found real solutions occurring io certain
parts of this regron,
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For the condition to deterinine F,(x), Falkner and Skan choose the
condition that the coefficient of the lowest power of & ie. &, in
this error should vanish. )
This gives

(8.12)

If we consider the neighbourhood of the point of separation we
ste, from graphs given by Falkner and Skan relating ¥,, I, and a',
in the solution of (8.8), that the value of I, corresponding to a value
of T, = lusually asseciated with separation and to small values of
a'y is finite and roughly about 5. Iquation (8.12) therefore implies
that da’,jdx and @', vanish together. It can be seen from the exact
solution of paragraph 2 for the flow past a circle that this condition
is not even approximately satisfied. Therefore, in the neighbourhood
of the point of separation the condition (8.12) should not be used.

Turther insight to the meaning of (8.12) can be obtained by
substituting from (8.9) in (8.8) and from (8.10) in (8.11). We find
that the condition that

a'gla’ k= a"fa" e (8.13)

is
2x da"
Fdx):%(l-&-l-—-;;;—zf (8.14)

. (2
where a”, is the correct value of \5_52) £

Thus, if @', = a”, then (8.12) implies that a’g == 2",

This remark is true whichever two solutions of (8.1) and (8.8) are
chosen. Let us suppose, for a moment, that the correct value of
a®, is known and that the corresponding value of Fy(x) is obtained
from (8.14). The derivation of (8.14) gives us no reason for supp0=m0
that when this value of F,(x) is used in (8.8) the value of a', corres-

ponding to the particular solution satisfying the condition 7E 1

at infinity is even approximately correct.

Thus, logically, the application of the condition (8.12) seems to
be without foundation. It appears to be a matter for trial whether
the application of the condition {8.12) gives a better approximation
than the first.

Theoretically, this difficulty could be overcome by using the
condition that the mean square error should vanish. For, in the
solution of (8.8) ¢ can be expressed as a function of ¥,, the corres-
ponding value of a’, and & The integral equation

e res el @tol

f Flacmoe 280
417 L 0)*
~[re-r] e

’-
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&

(8.15)
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gives a relation between F, and a', for making the error a minimum.

Unfortunately, this expression seems to be too complicated to be of
use.

We proceed now to the discussion of the method when the con-
dition (8.12) is used. The application of this condition suggested by
the present writer is imimediate. The solutions of (8.8) satisfying
the condition at infinity express F, as a function of ¥, and a',,
i.e., as a function of » and a’,. The graphs given by Falkner and
Skan show the exact nature of this relationship. Thus, (8.12) is an
ordin~ry differential equation in % for a’, and can be solved by the
usud methods. This gives the skin-friction immediately and
velocity profiles can be obtained from the coiresponding values of
F, and T, and graphs given by Falkner and Skan.

« The method cau be used, either to continue another solution, or to
give a complete solution. In the latter case, the initial value for
starting the integration is given by the accurate solution when
l=1 as a',=0-616. In the former case, the initial value for
starting the integration may be supposed known.

Summary of Procedure—(i) Tabulate ! = U'x/U for a series of
values of.x, say, %), %,,.... .

(1) From the value of F, = lat x = x, and any value of a’, obtain
F, from graphs published by Falkner and Skan. )

" (ii) From this value of F, and equation (8.12) obtain the corres-
ponding value of da’,/dx. Thus, da',/dx can be obtained for any pair
of values of a’, and =, and the solution completed in the customary
graphical way for a first order lincar differential equation.

The method has been used by the present writer as an alternative
method for comparison with Dryden’s modification of Pohlhausen’s
method, when the ordinary method due to Yohlhausen breaks down
(sce paragrapn 3). The method of the present paragraph was started
from a value of a’,, given by the ordinary Pohlhausen method, some
distance before the breakdown occurred. It was used to continue
the solution through the region where the difficulty occurred. Since
the method of the present paragrapb should not he used in the
neighbourhood of the point of separation, ie., for negative values
of U’, the ordinary Pohlhausen solution was joined on as soon as
the region of difficulty was passed. (This region of difficulty is
essentially confined to positive values of U'.)

Falkner and Skan apply the condition (8.12) differently. They
assuIme an expansion

dl al -
Fz(x)=%(1+l+c1;i;x+cpza,x-+....) o 819)
and the condition (8.12) gives

2x da’, di d?l \
—(TZQF:(c'R;-}-sz;Z—AE.*-) e o .. (817)
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An approximation, not mentioned by the authors in their paper,
is involved in the inethed of determining the ¢'s from (8.17). I,
following Falkner and Skan, we assume that each term 'in the
expansion in (8.17) is small compared with the previous one we find,
omitting the terms in x* and higher powers of x, that

e lla 2 _‘2 »
@, 2 T A
. —2dd'y 2da’,
=1 - 5 == )
ie, ¢ ( 7 T )"0 ( P :)M .. (8.18)

- - . bt Z
Falkner and Skan state that the coefficients ¢, = ((—f— ‘-(%:)
2 imt

dc
( d(ll> can be evaluated from the known solution of (8.1) as
Is=}

2~ (. However, for small values'of x, U = u;x, I = I and this gives

formation about { %2 ur
no information about { — o \3
da’, da’, ;s
In stating that ( dl> o )m-,, where a’, is regarded as

a function of = in the solutions of (8.1) with U = kx™ for constant
values of m, Falkner and Skan are, in effect, determining the constants
¢ from the first approximation.

Thus, the value of Fy(x) determined in this way satisfies the
condition (8.12) approximately and not accurately.

It is interesting to compare the value ¢, = — 0-925 given by this
approximate method with those obtainable from the accurate
solution of paragraph 2. .

U=z upx®4 .
Cl = = 0'8356.

HU=ux+4+uax®-t .

‘-..

CI—-:-—Of\O

--------------

. where 3, and u, are # 0.

. where #, and #; are # (.

-

In the case of ¢, the approximate method gives

. [ /dl 1%l .
¢, =K, [(ax) td‘ ] .. .. .. .. (8.19)

where X, is a numerical constant.

The exact solution gives

ey=K'y + K’ [(‘73 /d 1_0 L (820)

where X', and K", are numerical constants.
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u[U for § = 0-25, 0-50, 0-75 and 1-00), thus giving the skin-friction
and points on the velocity profile.

Using the approximate values of the ¢'s it is evident, in the case
of syminetrical flow, that ¢, =c¢;= ... =0 and therefore

Todl
Fz(x)=§[1+l+clé—xx e may

This value of F,(x) determined from the condition (8.12) should
become infinite at the point of separation. The fact that it does
not become infinite for any value of x means that the approximate
values for the ¢'s are not sufficiently accurate to satisfy the condition
(8.12) as far as the point of separation. Indeed it will be seen that
the coefficient ¢, does not vanish, that similarly ¢, c,, . . . also do
not vanish, and, therefore, that the value of Fy(x) given by (8.21) is

quite wrong for the larger value of x owing to the neglect of these
terms. - .

In the case of the circle, for which diagrams (see¢ figs. 2-6) have
been given, using the original method and the expression (8.21) for
Fy(x), it will be seen that the skin-friction is given in good agreerent
with the exact solution of paragraph 2 as farasthe point of separation.
This must be taken as coincidence since (8.21) is not an adequate
representation of the condition from which it is derived, as far as
the point of separation.

The quantity a’, has been calculated using the method suggested
by the present writer. It is shown in fig. 7 compared with the exact
solution of paragraph 2, the solution of paragraph 3, and Talkner
and Skan’s first approximation. It will be seen that the second
approximation, calculated in this way, is in good agreement with
the exact solution as far as x = 6, i.e., for positive values of U’.
For negative values of U’ and the correspondingly small values of
a’, the agreement is poor. The breakdown of the approximate method
of the present paragraph for small values of @', was anticipated
earlier from a consideratjon of the condition (8.12).

More evidence, in the shape of comparisons with other methods
for various velocity distributions, is desirable, but it seems probable
that the approximation considered will give veliable results so long
as U’ remains positive. The method should not be used for negative
values of U,

The present writer can find no theoretical grounds for using (8.21)
as distinct from (8.12). The good approximation it gives for the case
of the circle seems to be the sole justification for using (8.21).

The way to use the original method is clear. The quantities
s 7y + - are given in any problem as functions of x; ¢,, K, etc. are

numerical constants given by Falkner and Skan and thus the
functions F, and F, can be tabulated as functions of x. The graphs
published by Falkner and Skan then determine a’, and the ratio
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9. Thom'’s Second Method —Summary.—The method is an
approximate one, the first approximation being obtained by assuming
that #/U is a function of ¥ only. Now in paragraph 2 we cbtained
the velocity distribution through the boundary layer in the form

w=1f x4+ 3u, x4 ....
where the velocity U at the edge of the boundary layer is given by
U=ux+up®+ ...
The «'s are constants and the f's are functions of y only. Therefore
1#fU is a function of y only provided that
Upz=y= ,,.. =0
since the f’s are all unequal. .

Hence, the first approximation holds only when the velocity is
lincarly connected with the distance from the forward stagnation
point. In general, such a relation will only hold for a small range
of values of z.

The second approximation consists in estimating the neglected
terms by means of the first approximation, and would he expected
to be true only when the wvelocity, has not deviated far from the ’
form u;x.

Thom applied this method to the case of the circle. Tn this case
it will be seen later that uy/n, and ugfiy are very small, and hence
the example is favourable to the use of this method. The solution
given by this method is compared (see paragraph 10) with the more
accurate one given by the method of paragraph 2 in figs. 2, 3 and 4.
The method will be seen to give a good approximation as far as 50°
from the forward stagnation point. Near 70° from the forward
stagnation point, where U’ is very small and the velocity profile is
considerably different from a linear function of the distance from the
forward stagnation point, the method is valueless,

Delails—First Approximation.—Write 4 = Uf .. (9.1)
where [ is a function of y only.
. oun .
Equation (1.1) on neglecting the term v 5—; , gives

IZU v [ZU < L -
U(Zr->f-'=u<z%>-g-rbf 0
On integration this gives
y = [2v/(@U[dx)2 F(/) .. .. .. 9.3)
where :

n A/3df 03— V1—7

i) = f e = log P (9
0/2(fP =3+ 2 V3 —A/f+2

Equation (9.3) expresses y as a function of f; by giving a series of
values 1o f, lying between 0 and 1, we can find the corresponding
valie of 3, and hence the velocity distribution at any given section.
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Second Approximation—With f no longer restricted to be a :
function of ¥ only, but permitted to involve x also, a closer approxi- 2 |
mation can be obtained by using (9.3) to estiinate the value of the : ;
neglected term v-g—; in the equatlon of motion, and the term U f : :
. { |
%—‘ , whe wisgivenby (9.1). { . |
k4 ~ > t !

Using (9.3) we find

d*U f

. F (f) da? _ :

’ (l)..( ( )/( %r' T X
dx )
where F(f) is given by (9.4) and thus ' \T‘r

42U \ ) f :
ou dU ( dx'z H :
dx H ‘
™ ou dU . % ‘

) .(n)vgym—Uz;gb(f) .. . ‘e .. .. 9.7) ’

« 21

where i

1 ;
P I . |
. s =g ) ST DY B

e g SRV &\w At .

§
/ : Then equation (1.1) becomes
| 42U
| AU L F() TR qU qU ,
3 VP H A0 s — U 4N =V 0 9.8) -
| S dx P
: Integrating gives
! 3 . 5
| =G/D) «
¢

e
11

, dU\?
\/j3—3j+.-3 {(UM)/( f)df+3j¢1\a
.. 9.9
1. . thus giving the particular value of y to associate with a given value of

1, at any section.

Owing to the special nature of the first approximation the second
approximation cannot be expected to give good results unless the
assumption originally made is roughly true.
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10. Conclusion.~The methods of paragraphs 2, 3, 4, 8 and 9
have been graphically compared for the flow past a circle using the
experimental values of Hiemenz. The results are given in Figs. 2, §,
4, 5 and 6. For a circle of radius 4-87 cms. in a fluid of kinematic
viscosity » = ()-01 and the velocity at infinity of 19-2 cms./sec.
(i.c., R = Udfr = 18544-5) Hiemenz (loc. cit.) gives

U = u,x 4 ugx® 4 upxb.. .. . .. .. (10.1)
where o, =7-151, 4, = —0-04497 and uz; = — 0-0003300 for
0 <x=<8. The corresponding pressure distribution is shown in
Fig. 1.

\We consider, first, the accuracy with which the method of
paragraph 2, together with Table 1, gives the velocity distribution
and the point of separation by estimating errors asin (c) of paragraph
2. The velocity distribution is given by equation (2.55).

fTIRY) s
. P 35 g0 3 e 7 < 0.068 <
The term in 27 is 8 (——-u] Wy + e k ,).x = 0:06 for 0 xf 7.

Thus, for a range of values of 2, 0 X 2 < 7 (corresponding to an
angular displacement of 82° from the forward stagnation point),
the possible error in the velocity is (-2 per cent.

The point of separation is given by equation (2.56). Denote by
$(x) the right-hand side of this equation, by 0(x) {he sum of the
terms in , x* and 2* and by R(x) the remaining terms. Arguing as in
(¢) of paragraph 2 we see that the term in &7 remains less than 0-15

for x in the range 0 S x < 7-1.
Therefore | R | <0-15 + terms small in comparison with 0-15.
Hence we expect | R | certainly to be less than 0:2. Now

0(6-85) =0-3, 0(7-05) = — 0-2.

Therefore ¢ (6-83) = 0-3 + R(6-85). .

Thus ¢ (6-85) lies between 0-1 and 0-5 since | R | < (-2.

Also ¢ (7-05) = — 0-2 4 R(7-05).

Thus ¢ (7-05) lies between 0-0 and — 0-4.  Hence o (%) changes sign
in the.interval 6-85 and 7-05. Therefore, ¢ (x) = 0 has a root

between 6-85 and 7-03, ie., the point of separation lies hetween

x = 6-85 and x == 705, i.e., belween 81° and $3° from the forward
stagnation point. i
Pollhausen (loc. cit.) attacks Hiemenz's result for the point of
separation as being obtained from an insufficient number of terms
of a slowly converging series, as all terms of higher power than the
fifth in x were neglected. It will be seen that this attack was, to
some extent, unjustified, since we have shown that Iliemenz's
result for the position of the point of separation lolds good to
within two degrees, whereas Pohlhausen suggests that il was more
by good fortune than mathematics that Hiemenz was anywhere near

.

the correct answer. ;
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It should be pointed out again that this example of flow past a
circle is rather a special case inasmuch as, when the velocity at the
edge of the boundary layer is expressed in the form (u,x -} 2,2
= 1,2%) for a representation holding right from the forward stagnation
point to the point of separation, the ratios #4/u, and uy/u, are very
small.

The application of the remaining methods to this problem needs
no further remark, except it should be pointed out again, that owing
to the amount of work involved the method of Bairstow and Green
was not applied to the pressure distribution given by Hiemenz.
The velacity distributions for this method were found by cross-
plotting from the velocity distributions given by Green (loc. cit.).
The pressure distribution used by Green for the calculation of his
results and that corresponding to equation (10.1) above are compared
in Fig. 1, and it will be seen that the two pressure distributions are
considerably different in the neighbourhood of the point of separation.
Green’s results are not, therefore, included beyond 50° from the
forward stagnation point.

It will be seen from the figures and the foregoing discussion that
if the method of paragraph 2 (together with Table 1 or 2) is sufficient
to give the solution as far as is required. it is certainly the best
method to use. If the solution cannot be carried sufficiently far by
this means the method of paragraph 3 is recommended, though many
more comparisons between this method and that of paragraph 2 are
required hefore the former can be used with great confidence owing
to the difficulty in estimating the error.

1 am indebted to Mr. Falkner for pointing out to me that the
analysis given in the preceding pages covers the case of a round-nosed
obstacle only, and that the case of a cylinder, whose section has a
sharp point in the neighbourhood of the-nose, has not been
mentioned.

The theoretical solution for this case seems to be possible only
when the forward stagnation point coincides with the sharp point.
In this case the velocity distribution in the main stream in the
neighbourhood of the forward stagnauon point can be written in
the form U == k™ where m £ 1. Mr. Falkner remarks, [urther,
that the only nethod, so far published, which specifically inchiles this
case is due to Miss Skan and himself. It is, indeed, evident from the
description of this meciirod given in paragraph 8 that its application
is quite independent of the choice of the value 1 for m in the neigh-
bourhood of the origin.

The method of paragraph 3 can, however, immediately be
extended to the case considered. The only difference lies in the
choice of the initial value for starting the integration of equation
(3.1).  For small values of x, U has the form kx= and equation (3.5)
can then be writlen

A = mf(X) + (m — 1)1 (7) )
x

ce e (109)

— i e
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As in paragraph 3 we use the criterion that the thickness of the
boundury layer should be finite at x = 0. This condition gives

mf(d) 4 — 1)1 (2) =0,at x=0. .. . .. (103)

This equation seems to have been noticed in the first place by
Dryden (loe. ¢it.) when he carried ont a series of comparisons between
Pohlhausen’s method, his own modification of it, and the dccurate
solution for the case when U = ka™ holds for all values of . In this
simple case the cquation (10.2) cun be integrated irnmediately and
the solution obtained: from the initial value given by (10.3).

In the more general case considered the initial values for 2 and

il-z liave to be determined from (10.3) and (10.2) respectively and the

general form (3.1) used for the integration.

Equation (10.3) is cubic in A for any particular value of m, and
therefore there are three possible values for the initial value of A
It scems very probable that, as in the case m =1 discussed in
patagraph 3, it should be possible to eliminate two of these values
as giving either imaginary solutictis or solutions which necessarily
break down before the point of separation is reached and that the
reiaining value gives a solution which does not necessarily break
down before the point of separation is reached. This hus been
verified by the present writer for the cases m = 0 and 2. The value
of this metnod, or Dryden’s modification of it, lies in the solution
extending to tie point of separation.

I wish to acknowledge my indebtedness to Dr. Goldstein for
suggesting this paper and also for the many helplul suggestions he

has made.
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. TABLE 1
n S I f’l fs S I
0-0 0-0000 0:0000 1-23264 | 0-000 0000 3-7246
0-1 0-0050 0-1183 1-1328 0- 0N 0-068 0-625
0-2 0-0233 0+ 29266 1-0345 0-013 0-125 0-520
0-3 0-0510 03252 0- 9486 0028 0-174 0-438
0-4 0-0881 04144 08463 0-048 0-213 0954
0-5 0-1338 0)-4946 0-7583 0071 0-245 0-278
06 0-1867 0-5662 0-6751 0096 0-269 0-211
0-7 - 2466 062498 0.5973 0-124 0-28? 0-154 =
0-8 0-3124 (-6859 0-5251 0-154 0-300 0- 1)4 =
0-9 03835 0)-7350 0-4586 0-184 0-308 063
1-0 0-4592 0-7778 0- 3950 0-215 0-318 0-029
1-1 0-5389 08149 0-3431 0-246 0-314 +0-008
1-2 0-6220 0- 8487 0-2937 0-277 0-313 —0-017
1-3 0-708) 0-8738 02493 0309 | 0-311 —0)-081
1-4 0-7966 0-8968. | 0-2109 0340 0307 —0-941
1-5 0-8873 0-9181 01769 0-370 0-302 —0-048
1:6 0-9798 09324 01473 0-400 0-298 ~—0-051
1-7 1-0738 0-9457 | 0-1218 0-429 0-293 —0-:052
1-8 11688 09569 0-0999 0-458 0-288 —0-051
19 1-9650 0-9659 0-0814 0-487 0-983 —0-048
2.0 1-3619 0-9732 9.0658 0-515 0-278 —0)-045
2-1 1-4596 0-9792 0-0528 0-543 0-273 —0-040
2.2 1-5577 0-9841 0-0420 0-570 0-269 —0-036
2-3 1-6563 0-9876 0-0332 0597 0-266 —0-052
2.4 1-7552 0-9905 0-0260 0623 0263 —0-078
2.5 1-8543 0-9928 1 - G-n202 0649 6-259 —0-023
2.6 19537 0-9946 0-0156 0-676 0-958 —0-020
2-7 2-0533 0-9960 0-0119 0-701 0-257 —0-017
2-8 2-1529 0-9971 0-0081 0-726 0-256 —0-013
2.9 2.2528 0-9979 6-0058 0751 0-254 —0-011
30 2-3595 0-9985 0-0051 0-777 0-253 —0-010
3] 2-4593 0-9988 0-0036 0-802 0-252 —0-008
3.2 25522 0-9992 0-0027 0-828 0-251 —0- 007
3-3 2-652) 0-9994 0-0023 0-853 0:951 —0-005
3-4 2.7521 0-9996 0-0019 0-879 0-251 —0-004
35 2-8520 09947 0-0014 0-904 0-250 —0-003
3.6 2-9520 0-9998 0-0010 0-929 0-250 —0-002
3-7 3-0519 0-9949 0-0008 0954 0-250 —0-002
3-8 3-1518 0-9989 00004 0-979 0-250 —0- 001
3.9 3.25)8 0-9999 0-0003 1-004 0-250 —0-0M
4-0 3-3518 1-0000 0-0002 1:029 0250 —0-001
4.1 3-4518 1-0000 0-0001 1-054 0-250 0-000
4.2 3-5518 1-0000 0-0001 1-079 0-250 0000
4:3 3-6518 1-0000 0-0000 1-104 0-250 0-000
P ‘...,),—-¢
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TABLE 1—continued

n 8s &'s £s by W " k, K, k"

0:0]0-00!10-00| 0-637] 0-00] 0:00| 0-12}|0-00}0-00] 0-012
0-1(0-0010:068) 0:04} GOO| 0:01 0:07 { 0-00 1} 0-00 | 0-01
0-210-0110-11 0-44 0-00f 0-01 }-+0-0310-00]0-00} 0-02
0-310-03]10-157 0-35{ 0-00] 0-02}—0-011]0-00]0-00; 0-02
04100410181 0-27] 0-01 0-01 {—0:04 | 0-00 | 0-0]) 0-02
0-510-06 [ 0-201 0-20| 0-0! 0-01 |—0-07 { 0-00 | 0-01 0-03
0:610:081(0-221 0-14 0:0} {40-00 |—0-08 | 0-00 | 0-01 0-01
0:780-10]10-23F 0-09] 0-01 |[—0-01 §—=0-08 ] 0-0 | 0-0! 0-u5
081 0-13 ] 0-24 0-05 000 |—0-02 |—0-08 } 0-00 ] 0-01 0-05
0910157024 }-+0-02 1 0-00 }—0-03 {~0-0810-00 | 0-02] 0-05
101 0-17 § 024 |=0-01 {40-00 ]—0-03 |—0-07 | 0-01 ] 0 02 0-03
1-110-20 | 0-24 |—0-03 {—0-01 |—0-04 |—0-05 §{ 0-01 { 0-03 | 0-05
1:210:22 1024 |—0-04 |=—0-01 |—0-05 |—0-04 | 0-0: | 0-03 | ©-04
-3 0251 028 | =005 |[—0-02 |—)-05 |—0-03 | 0-01 | 0-04 0-03
1o | 0:27 1 0:23 |—0-06 |—0-02 |—0-05 |~=0-02 | 0:02 ; 0-04 | 0-02
1-510:29| 0-22 |—0-06 {—0-03 [—0-05 |—0-01 | 0-02 1 0-05| 0-02
1:610-31 1 0-21-]—0-07 |~0-03 |—0-U5 000 | G-02 | 0-05 0-01
171 0-34 ] 9-21 |—0-06 {~=0-04 |~0-05 |$+0-0f | 0-03 | 0-05 ] @-N
1:870:361{0-20|—0:06 [~—0-04 |—0-05} 0-92 [ 0-03 ] 0-05 {+0-01
1-9 ] 0-38.1 0-19 |—0-06 |—0-05 |—0-04 0-02 1 0-04 { 0-05] 0-00
2:010-3910-19 |—0:08 |—0-05 |—0-04 0:03§0-04 1005 €-00
2-1 1 0-41 {1 0:19 |[—0:05 |—0-05 |—0-04 0081005 0-05 {—0-01t
2:210-4310-18 |—0-04 |—~0-05 |—0-03 | n-031 0-05 | 0-04 {—0-02
2:310:45 ¢ 0-18 |—0-04 |—0-05 [—0-03 0-0210-06|0-04 |[—0-03
2:410:46 § 0-18 [—0-03 |—0-05 {—0-03 0-02 | 0-07 § 0-04 |—0-04
2:5 | 0-48 | 0:18 |[—0-03 [=~0-05 |—0-02 | 0-02 | 0-08 | 0-03 (—0-04
2:61 049 | 0-18 |[-=0-02 [—0-05 |—0-02 ] 0-02 0-09} 0-02 |—0-G3
2:710-51 | 0-}8 [—0-0f |—0-05 {—0:01 0-01 1008} 0-01 {—0-02
2-8)0-5310:17 |~—0-01 |—0-05 | 0-00| 0-0i | 0-09 ] 0-00 {—0-01]
2:010-54 1017 0-00 |—0-051 000} 0-001.0:09{0-00 {—0-01}
3:0;0-56 017 | 0-00{—0-065} 0-00| 0-00 | 0-09]0-00] 0-00
3:110:58|0-17 1 000 |—0-05] 0-00] 0-0010-09{0-00} 0-00
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TABLE 2
7 h I i) I f: e f’:
0-0 (- 0000 | 00000 1.23264 | 0-000 0000 0-7982
0-1 0-0060 0 1IR3 1-1328 0-004 0-075 0-G9Y
0-2 0-0233 02266 1-0345 0-015 0-140 0-602
¢-3 0-0510 (- 3152 (- 9388 0-032 0-195 0-509
04 0-0881 0-4144 0-8463 0-054 0-242 0-423
05 0- 13365 044946 0-7583 0-080 0-280 0-344
0-6 0-1867 0-5662 0-6751 0-109 0-311 0-273
0-7 0- 2466 0-6208 0-5973 0- 142 0-336 0-210
08 0-3124 ¢ 0-6859 05251 0-175 0-353 0-356
09 [} R 1 (-7350 04586 0-212 (-367 0-109
i-0 0-4592 ):7778 03980 0-249 0375 . (070
11 0-5389 0-8149 0-343t 0-287 (-381 0-037
1-2 0-6220 0-8467 0-2927 0-325 0-384 40-012
1-3 {-7081 (}-873H 02408 0-363 0-384 —0-007
1-4 - 7966 (0-8968 -2109 0-402 (-382 ~{}-021
1-5 0-8873 0-9161 01769 0-440 (- 380 —-032
1:6 0-9793 0- 9324 0-1473 0-477 1)-377 ~0- 049
1-7 1-0738 0-9457 0-1218 0515 0-373 —{)-0142
1-8 1-1688 0-9359 0-099¢ 0-552 (-368 —0-043
1-9 1-2650 0-9659 0-0814 0-583 0-364 —0-043
2:0 1-3619 0-9732 0- 06858 0-625 0-361 —0-041
2-1 1-4596 0-9792 (- 0528 0-651 4-357 —40-038
22 1-5577 0-9841 0-0420 0-696 0-353 —0-034
23 1:6563 0-9876 0-0332 0-731 {-350 —0:030
2-4 1-7552 0-9905 0-0260 0-766 0346 —0-026
2-5 1-8543 0-9928 0-0202 (- 801 0-344 —4-022
2-6 1-9537 0-9946 0-0156 0-835 0-342 —~0-019
2:7 2-0533 0- 9460 0:0119 0-870 0-340 —0-016
2-8 2-1529 0-9971 0-000 0-604 0-338 —0-014
2-9 2-25%8 0-9979 0-0068-| 0-948 (-337 —0-G 1
30 2-3525 0-94985 0-0051 0-972 0-336 —0- 009
31 24823 )-9988 G-0036 1-006 0-33 —(-007
3-2 2-5522 0+ 9992 0-0027 1-040 1)-345 ~—{)- 0B
3-3 2-06521 0-9994 0-0023 1-073 0-345 ~{)- 005
3-4 2:7521 09996 0-0019 1:106 U-3834 —0- 003
3-5 2-8520 0-9v47 0-0014 1-139 0-334 —0-003
3-6 2-9520 09998 0-0010 1:172 {)- 334 -=(}- 02
3-7 3-0519 04999 0-0008 1-205 0 334 —(- 00
3-8 3:1518 09909 0-0004 1-248 3-3833 —0-001%
3.9 3-2518 0-9999 0-0003 1-271 0-333 —0-tn1
4:G 3-3518 1-06060 0-0002 1-304 0-333 —{- 01
4] 3-4518 1-0000 0000 1-347 0-333 0-0np
4 3-5518 1-000 C-0001 1-370 0-333 0 - ()
4-3 3-6518 1-0000 0-0000 1-403 0-333 U-000)
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TABLE 2—cemiinued

7 83 g's £ . hy by b, ky K, K,
0-0 §0-000 0000 0-725]1 0-00} 0-00| Q<166 0-00 | 0:00 |—~0-019
0.1} 0004100881 0:-625] 0:001} 0-01 0:-121 0-00} 0-00 }~0-02
0-210-013710-1251 0-529 4§ 0-00 ] 0-02} (-07 000§ 0-00 |~0-02
3:310-0°8)0-174 0-438 { 0-01 003 |-+0-03 | 0-00 |[—~0-01 [—0-01
0-4] 0-045} 0:213 ] 0:354 0.0} 0-03 |—0-01 0-00 |—(-01 j—0-01
0:510:071}10-245}1 0-2728} 0-0 0:03 |—0-04 0:00 {—0-01t 0:00
0:6]10:096 1} 0-2691 0-211 0-01 0-02 |~0-051 0-00 |—0-01 0-00
G-7106:-124§0-287 | 0-153}{ 0-02| 0-02 |—(-07 |—0-O1 G- G0 {~4-0-01
0:870:154]10:300] 0-1041 0:02 |40:01 }|—=0-07 |—0-01 0-00] 0-02
0:9]0-18410-3081 0-063] 0:-02} 0:00 |=—b-07 |—0-0} 0-00 { 0-03
1:01 0:215}10-3131 0:029] 0-02 }—0:01 |~0-07 {~—0-01 0001 0.4 .
1-1 1 0-246 | 0-314 }4+0-003 | 0-02 1001 }=—0-06 |—0-01 007! 0-04
1:210-277 1 0-313 | —0-017 | 0-01 }~—0:02 |—0-05 |—0-01 |3-0-01 0-04
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